Two-Photon Polarization Fourier Spectroscopy of Metastable Atomic Hydrogen

  • A. J. Duncan
  • Z. A. Sheikh
  • H. Kleinpoppen
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

For many years the theoretical and experimental study of atomic hydrogen has been used to improve our understanding and extend our knowledge of the fundamental properties and behaviour of atoms. The states with principal quantum number n=2 are and have been of special interest and importance, in particular with regard to the determination of the fine structure constant and measurement of the Lamb shift. It was, of course, the observations of the Lamb shift in 1947 and 1950 by Lamb and Retherford [1] which, by demonstrating the nondegeneracy of the 22S½ and 22P½ states, confirmed that the 22S½ state would be metastable in experimentally realisable situations, and showed that it should be possible to observe the two-photon emission which is the main mode of decay of this state. However, Göppert-Mayer, in 1931, in a paper [2] which pioneered the field of multiphoton transitions, was the first to predict the possibility of the spontaneous two-photon decay process and, in 1940, Breit and Teller [3] applied this theory to the 22S½ − 12S½ transition in atomic hydrogen. Improved calculations of the characteristics of the two-photon decay process were carried out by Spitzer and Greenstein [4], Shapiro and Breit [5], Zon and Rapaport [6], Klarsfeld [7] and Johnson [8]. Further refinements to the theory have been made for example by Goldman and Drake [9], Parpia and Johnson [10], Tung et al [11], Florescu [12], Costescu [13] and Drake [14]. A comprehensive review concerning the metastability of atomic hydrogen up to 1969 was given by Novick [15] in which he emphasised the various controversies with regard to the metastability or otherwise of the 2S state during the first part of this century.

Keywords

Quartz Magnesium Argon Helium Fluoride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.E. Lamb and R.C. Retherford, Phys. Rev. 72, 241 (1947); 79, 549 (1950).ADSGoogle Scholar
  2. M. Göppert-Mayer, Ann. Phys. (N.Y.) 9, 273 (1931).MATHGoogle Scholar
  3. G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).ADSCrossRefGoogle Scholar
  4. L. Spitzer and J.L. Greenstein, Astrophys. J. 114, 407 (1951).ADSCrossRefGoogle Scholar
  5. J. Shapriro and G Breit, Phys. Rev. 113, 179 (1959).ADSCrossRefGoogle Scholar
  6. B.A. Zon and L.P. Rapaport, JETP Lett. 7, 52 (1968).ADSGoogle Scholar
  7. S. Klarsfeld, Phys. Lett. 30A, 382 (1969).ADSGoogle Scholar
  8. W.R. Johnson, Phys. Rev. Lett. 29, 1123 (1972).CrossRefGoogle Scholar
  9. S.P. Goldman and G.W.F. Drake, Phys. Rev. A 24, 183 (1981).ADSCrossRefGoogle Scholar
  10. F.A. Parpia and W.R. Johnson, Phys. Rev. A 26, 1142 (1982).ADSCrossRefGoogle Scholar
  11. J.H. Tung, X.M. Ye, G.J. Salamo, and F.T. Chan, Phys. Rev. A 30, 1175 (1984).ADSCrossRefGoogle Scholar
  12. V. Florescu, Phys. Rev. A 30, 2441 (1984).MathSciNetADSCrossRefGoogle Scholar
  13. A. Costescu, I. Brandus, and N. Mezincescu, J. Phys. B 18, Lll (1985).Google Scholar
  14. G.W.F. Drake, Phys. Rev. A 34, 2871 (1986).ADSCrossRefGoogle Scholar
  15. R. Novick, in Physics of One and Two-Electron Atoms (Edited by R Bopp and H Kleinpoppen ) pp 296 - 325, North Holland, Amsterdam (1969)Google Scholar
  16. X. Mu and B. Crasemann, Phys. Rev. A. 38 4585 (1988).ADSCrossRefGoogle Scholar
  17. Y J. Wu and J.M. Li, J. Phys. B: At. Molec. Opt. Phys. 21, 1509 (1988).ADSCrossRefGoogle Scholar
  18. X.M. Tong, J.M. Li, L. Kissell and R.H. Pratt, Phys. Rev. A. 42, 1442 (1990).ADSCrossRefGoogle Scholar
  19. P.C. Stancil and G.E. Copeland, Phys. Rev. A. 46, 132 (1992).CrossRefGoogle Scholar
  20. M. Lipeles, R. Novick, and N. Tolk, Phys. Rev. Lett. 15, 690, 815 (1965).ADSCrossRefGoogle Scholar
  21. C.J. Artura, N. Tolk, and R. Novick, Astrophys. J. 157, L181 (1969).ADSCrossRefGoogle Scholar
  22. R.W. Schmeider and R. Marrus, Phys. Rev. Lett. 25, 1692 (1970).ADSCrossRefGoogle Scholar
  23. R. Marrus and R.W. Schmeider, Phys. Rev. A. 5, 1160 (1972).ADSCrossRefGoogle Scholar
  24. C.L. Cocke. B. Curnette, J.R. Macdonald, J.A. Bednar, and R. Marrus, Phys. Rev. A. 9, 2242 (1974).ADSCrossRefGoogle Scholar
  25. M.H. Prior, Phys. Rev. Lett. 29, 611 (1972).CrossRefGoogle Scholar
  26. C.A. Kocher, J.E. Clendenin, and R. Novick, Phys. Rev. Lett. 29, 615 (1972).ADSCrossRefGoogle Scholar
  27. E.A. Hinds, J.E. Clendenin, and R. Novick, Phys. Rev. A. 17, 670 (1978).ADSCrossRefGoogle Scholar
  28. H. Gould and R. Marrus, Phys. Rev. A. 28, 2001 (1983).ADSCrossRefGoogle Scholar
  29. Y. Bannett and I. Freund, Phys. Rev. Lett. 49, 539 (1982).ADSCrossRefGoogle Scholar
  30. P. Braunlich, R. Hall, and P. Lambropoulos, Phys. Rev. A. 5, 1013 (1972).ADSCrossRefGoogle Scholar
  31. R. Hippler, Phys. Rev. Lett. 66, 2197 (1991).CrossRefGoogle Scholar
  32. K. Ilakovac, J. Tudoric-Ghemo, B. Busic and V. Horvat, Phys. Rev. Lett. 56, 2469 (1986).ADSCrossRefGoogle Scholar
  33. K. Ilakovac, V. Horvat, Z. Krecak, G. Jerbic-Zorc, N. Ilakovac and T. Bokulic, Phys. Rev. A. 48, 516 (1993).CrossRefGoogle Scholar
  34. D.C. Burnham and D.L. Weinberg, Phys. Rev. Lett. 25, 84 (1973).ADSCrossRefGoogle Scholar
  35. C.K. Hong, Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).ADSCrossRefGoogle Scholar
  36. A.M. Steinberg, P.G. Kwiat and R.Y. Chiao, Phys. Rev. Lett. 68, 2421 (1992).ADSCrossRefGoogle Scholar
  37. Z.Y. Ou, X.Y. Zou, L.J. Wang and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).ADSCrossRefGoogle Scholar
  38. J. Brendel, E. Möhler and W. Martienssen, Europhys. Lett. 20, 575 (1992).ADSCrossRefGoogle Scholar
  39. D. O’Connell, K.J. Kollath, AJ. Duncan, and H. Kleinpoppen, J. Phys. B 8, L214 (1975).ADSCrossRefGoogle Scholar
  40. H. Kruger and A Oed, Phys. Lett. 54A, 251 (1975).ADSGoogle Scholar
  41. J.S. Bell, Physics (N.Y.) 1, 195 (1964).Google Scholar
  42. W. Perrie, AJ. Duncan, H.J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790, 2647 (E) (1985).ADSCrossRefGoogle Scholar
  43. T. Haji-Hassan, AJ. Duncan, W. Perrie, HJ. Beyer and H. Kleinpoppen, Phys. Lett. 123A, 110 (1987).ADSGoogle Scholar
  44. T. Haji-Hassan, Ph.D. Thesis, University of Stirling, Stirling, Scotland (1987)Google Scholar
  45. T. Haji-Hassan, AJ. Duncan, W. Perrie, H. Kleinpoppen and E. Merzbacher, Phys. Rev. Lett. 62, 237 (1989).ADSCrossRefGoogle Scholar
  46. T. Haji-Hassan, A J. Duncan, W. Perrie, H. Kleinpoppen and E. Merzbacher, J. Phys. B: At. Mol. Opt. Phys. 24, 5035 (1991).ADSCrossRefGoogle Scholar
  47. G.W.F. Drake, P.S. Farago and A. Van Wijngaarden, Phys. Rev. A 11, 1621 (1975).ADSCrossRefGoogle Scholar
  48. A. Van Wijngaarden, G.W.F Drake and P.S. Farago, Phys. Rev. Lett. 33, 4 (1974)ADSCrossRefGoogle Scholar
  49. A. Van Wijngaarden, E. Goh, G.W.F. Drake and P.S. Farago, J. Phys. B: Atom. Molec. Phys. 9, 2017 (1976).ADSCrossRefGoogle Scholar
  50. C.K Au, Phys. Rev A. 14, 531 (1976).ADSCrossRefGoogle Scholar
  51. Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 54 (1988).MathSciNetADSCrossRefGoogle Scholar
  52. AJ. Duncan, in Progress in atomic spectroscopy, part D (edited by HJ. Beyer and H Kleinpoppen), pp 447 - 505, Plenum Press, New York (1987).Google Scholar
  53. M. Born and E. Wolf, Principles of Optics, Pergammon Press, Oxford (1975).Google Scholar
  54. Z.A. Sheikh, Ph.D. Thesis, University of Stirling, Stirling (1993).Google Scholar
  55. A. Messiah, Quantum Mechanics Vol. I, p 469, North-Holland, Amsterdam (1965).Google Scholar
  56. G. Kaye and T. Laby, Tables of Physical and Chemical Constants, Longmans, London (1968).Google Scholar
  57. M J: Padgett, A.R. Harvey, A J. Duncan and W. Sibbett, Applied Optics 33, 6035 (1994).Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • A. J. Duncan
    • 1
  • Z. A. Sheikh
    • 1
  • H. Kleinpoppen
    • 1
  1. 1.Atomic Physics LaboratoryUniversity of StirlingStirlingScotland

Personalised recommendations