Interaction of Spin-Polarized Helium 23S-Atoms with Ferromagnetic Surfaces

  • H. Steidl
  • G. Baum
Part of the Physics of Atoms and Molecules book series (PAMO)


In recent years numerous investigations of clean and adsorbate covered substrates have been carried out by different methods. As most investigations of electronic properties use methods which give information averaged over a depth of a few atomic layers, below the surface, there is, in comparison not so much knowledge about the electronic properties at the surface. A distinct surface sensitivity, however, can be achieved by electron emission caused by impact of metastable He(23S)-atoms of thermal energy, a method called metastable deexcitation spectroscopy (MDS) (e.g. [1]). This technique probes predominantly the outermost atomic layer. The spin selective version of MDS uses an electron spin polarized He(23S) atomic beam (SPMDS) and was experimentally pioneered at Rice University [2]. Using the spin selectivity in the deexcitation process (at the surface), one has an excellent tool for. obtaining information on the magnetic properties of the outermost region of the surface. Here we report on studies of electron emission from clean and oxygen covered iron (110) and cobalt (0001) films. Due to the high intensity of our atomic beam we are able to carry out angle and energy resolving SPMDS measurements. With our spectrometer the energy distribution of the emitted electrons is determined directly.


Atomic Beam Resonance Ionization Oxygen Exposure Majority Spin Minority Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Conrad, G. Ertl, J. Küppers, W. Sesselmann, H. Haberland, Surf. Sci. 100, L461Google Scholar
  2. B. Woratschek, W. Sesselman, J. Küppers, G. Ertl, H. Haberland, Phys.Rev.Lett Google Scholar
  3. 55, 611 (1985)Google Scholar
  4. W. Sesselmann, B. Woratschek, J. Küppers, G. Ertl, H. Haberland, Phys.Rev Google Scholar
  5. B35, 1547 (1987).Google Scholar
  6. [2]
    M. Onellion, M.W. Hart, F.B. Dunning, G.K. Walters, Phys.Rev.Lett.52, 380 (1984)ADSCrossRefGoogle Scholar
  7. M.S. Hammond, F.B. Dunning, G.K. Walters, G.A. Prinz, Phys.Rev. B45, 3674Google Scholar
  8. C.W.F. Drake, in: “Atomic physics III”, S.J. Smith, G.K. Walters, ed., p. 269, NewGoogle Scholar
  9. York, Plenum Press 1977.Google Scholar
  10. [4]
    W. Schröder, G. Baum, J.Phys.E16, 52 (1983).ADSCrossRefGoogle Scholar
  11. [5]
    G. Baum, W. Raith, H. Steidl, Z.Phys.D10, 171 (1988).ADSCrossRefGoogle Scholar
  12. [6]
    R. Wu, A.J. Freeman, Phys.Rev.Lett.69, 2867 (1992).ADSCrossRefGoogle Scholar
  13. M. Getzlaff, J. Bansmann, C. Westphal, G. Schönhense, J.Magn.MagnMater. 104-Google Scholar
  14. 107, 1781 (1992).Google Scholar
  15. [8]
    R. Wu, A.J. Freeman, J.Appl.Phys.73, 6739 (1993).ADSCrossRefGoogle Scholar
  16. [9]
    R. Wu, D.S. Wang, A.J. Freeman, J.Magn.MagnMater.132, 103 (1994).ADSCrossRefGoogle Scholar
  17. M. Getzlaff, J. Bansmann, G. Schönhense, Solid State Comm. 87, 467 (1993);Google Scholar
  18. M. Getzlaff, J. Bansmann, G. Schönhense, Phys.Rev.Lett. 71, 793 (1993);Google Scholar
  19. M. Getzlaff, J. Bansmann, G. Schönhense, J.Magn.MagnMater. 140-144, 729 (1995).Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • H. Steidl
    • 1
  • G. Baum
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations