Skip to main content

Cluster Variation Method Calculations in Binary and Ternary bcc or fcc Phases

  • Chapter

Abstract

Usually, Cluster Variation Method calculations are performed at constant chemical potentials for the purpose of obtaining phase diagrams. However, it is sometimes useful to perform Cluster Variation Method calculations at constant composition in a single phase domain to look at the evolution of thermodynamic data and site occupations with temperature. This method allows also the comparison with results obtained with other models or using various Cluster Variation Method approximations. The resolution of the free energy minimization can be performed using the Natural Iteration Method initiated by Kikuchi or the Newton-Raphson procedure. When the Natural Iteration Method is used, it is necessary to introduce Lagrange parameters to take the constraints into account: normalization equations and fixed composition. These Lagrange parameters are related to the chemical potentials of the constituents. Some results obtained in binary and ternary systems possessing either bcc or fcc structure are shown, particularly the evolution of the free energy and the sites occupations with temperature and composition are displayed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Inden and W. Pitsch, in Materials Science and Technology, edited by R. W. Cahn, P. Haasen, and E. J. Kramers (VCH Verlagsgesellschaft,1991) p. 497.

    Google Scholar 

  2. A. Finel and F. Ducastelle, Europhys. Lett 1, 135 (1986).

    Article  ADS  Google Scholar 

  3. A. Marty, Thesis, University Paris 6, Paris, 1990.

    Google Scholar 

  4. P. Cenedèse, Y. Calveyrac, and A. Marty, J. Phys. I. France 4, 1063 (1994).

    Article  Google Scholar 

  5. G. Inden, Acta Metallurgica 22, 945 (1974).

    Article  Google Scholar 

  6. J. M. Bell, Physica 142A, 22 (1987).

    ADS  Google Scholar 

  7. G. Rubin, Thesis, University Paris 6, Paris, 1994.

    Google Scholar 

  8. G. Rubin and A. Finel, J. Phys: Condens. Matter 5, 9105 (1993).

    Article  ADS  Google Scholar 

  9. N. S. Golosov, L. Ya. Pudan, G. S. Golosova, and L. E. Popov, Soviet Phys. Solid State 14, 1280 (1972).

    Google Scholar 

  10. C. M. van Baal, Physica 64, 571 (1973).

    Article  ADS  Google Scholar 

  11. R. Kikuchi, J. Chem. Phys. 60, 1701 (1974).

    Article  Google Scholar 

  12. J. M. Sanchez and D. de Fontaine, Phys. Rev. B 17, 2926 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  13. S. K. Aggarwal and T. Tanaka, Phys. Rev. B 16, 3963 (1977).

    Article  ADS  Google Scholar 

  14. G. Rubin and A. Finel, J. Phys: Condens. Matter 7, 3139 (1995).

    Article  ADS  Google Scholar 

  15. R. Kikuchi and D. de Fontaine, in Applications of Phase Diagrams in Metallurgy and Ceramics, edited by G. C. Carter (NBC Publication N° SP496 1978) p. 967.

    Google Scholar 

  16. A. Kikuchi and J. L. Murray, Calphad 9, 311 (1985).

    Article  Google Scholar 

  17. R. Kikuchi and H. Sato, Acta Metall. 22, 1099 (1974).

    Article  Google Scholar 

  18. R. Kikuchi and C. M. van Baal, Scripta Metall. 8, 425 (1974).

    Article  Google Scholar 

  19. N. S. Golosov and A. M. Tolstik, J. Phys. Chem. Solids 36, 899 (1975).

    Article  ADS  Google Scholar 

  20. N. S. Golosov and A. M. Tolstik, J. Phys. Chem. Solids 36, 903 (1975).

    Article  ADS  Google Scholar 

  21. M. Sluiter, P. Turchi, Fu Zezhong, and D. de Fontaine, Physica 148 A, 61 (1988).

    ADS  Google Scholar 

  22. H. Ackermann, G. Inden, and R. Kikuchi, Acta Metall. 37, 1 (1989).

    Article  Google Scholar 

  23. V. Jacob, C. Colinet, P. Desre, and F. Moret, J. Phys. C France, in press.

    Google Scholar 

  24. C. Colinet, G. Inden, and R. Kikuchi, Acta Metall. Mater. 41, 1109 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Colinet, C. (1996). Cluster Variation Method Calculations in Binary and Ternary bcc or fcc Phases. In: Morán-López, J.L., Sanchez, J.M. (eds) Theory and Applications of the Cluster Variation and Path Probability Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0419-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0419-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8043-6

  • Online ISBN: 978-1-4613-0419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics