Skip to main content

Thermodynamic Properties of Coherent Interphase Boundaries in fcc Substitutional Alloys

  • Chapter

Abstract

The structural and thermodynamic properties of coherent interphase boundaries (IPB’s) have been studied using the Cluster Variation Method. Calculations have been performed for IPB’s in model ordering and phase-separating substitutional alloy systems with fcc-based crystal structures. Special attention has been devoted in this study to an analysis of the effects which temperature and crystallographic orientation have upon the finite-temperature properties of IPB’s. Values of the interfacial excess free energies, i.e. the interphase energies, have been calculated as a function of temperature for IPB’s with {100}, {110} and {111} crystallographic orientations. Additionally, the dependences of the composition, long-range and short-range order parameters on distance within compositionally diffuse interfacial regions have been computed. It will be demonstrated that both the thermodynamic and structural properties of IPB’s can be strongly dependent upon the temperature and the nature of the energetic parameters in the alloy system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. C. Russell, in Phase Transformations (ASM International, Metals Park, Ohio, 1970).

    Google Scholar 

  2. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  3. C. Wagner, Z. Elektrochem., Ber. Bunsenges. Phys. Chem. 65, 581 (1961).

    Google Scholar 

  4. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Article  ADS  Google Scholar 

  5. R. Kikuchi, Phys. Rev. 81, 998 (1951).

    MathSciNet  ADS  Google Scholar 

  6. J. D. van der Waals, Z. Physik. Chem. 13, 657 (1894).

    Google Scholar 

  7. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  ADS  Google Scholar 

  8. S. Fisk and B. Widom, J. Chem. Phys. 50, 3219 (1969).

    Article  ADS  Google Scholar 

  9. B. Widom, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1972).

    Google Scholar 

  10. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. S. Ono, Mem. Fac. Engng., Kyushu Univ. 10, 195 (1947).

    Google Scholar 

  12. M. Hillert, Acta Meiall 9, 525 (1961).

    Article  Google Scholar 

  13. J. L. Meijering, Acta Metall. 14, 251 (1966).

    Article  Google Scholar 

  14. Y. W. Lee and J. I. Aaronson, Acta. Metall. 28, 539 (1980).

    Article  Google Scholar 

  15. J. Y. Parlange, J. Chem. Phys. 48, 169 (1968).

    Article  ADS  Google Scholar 

  16. R. Kikuchi, J. Chem. Phys. 57, 777 (1972).

    Article  ADS  Google Scholar 

  17. R. Kikuchi, J. Chem. Phys. 57, 783 (1972).

    Article  ADS  Google Scholar 

  18. R. Kikuchi, J. Chem. Phys. 57, 787 (1972).

    Article  ADS  Google Scholar 

  19. R. Kikuchi and J. W. Cahn, Acta. Metall. 27, 1337 (1979).

    Article  Google Scholar 

  20. P. Cenedese, in Theory and Application of the Cluster Variation and Path Probability Methods. edited by J. L. Morán-López and J. M. Sanchez (Plenum, New York, 1996), p. 247.

    Google Scholar 

  21. A. Finel, in Statics and Dynamics of Alloy Phase Transformations, edited by P. E. A. Turchi and A. Gonis (Plenum, New York, 1994).

    Google Scholar 

  22. H. J. Leamy and K. A. Jackson, J. Appl. Phys. 42, 2121 (1971).

    Article  ADS  Google Scholar 

  23. H. J. Leamy, G. H. Gilmer, K. A. Jackson, and P. Bennema, Phys. Rev. Lett. 30, 601 (1973).

    Article  ADS  Google Scholar 

  24. Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, New York, 1979), and references cited therein.

    Google Scholar 

  25. K. Binder, Phys. Rev. A 25, 1699 (1982).

    Article  ADS  Google Scholar 

  26. Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer, New York, 1984), and references cited therein.

    Google Scholar 

  27. G. W. Woodbury, Jr., J. Chem. Phys. 51, 1231 (1969).

    Article  ADS  Google Scholar 

  28. G. W. Woodbury, Jr., J. Chem. Phys. 53, 3728 (1970).

    Article  ADS  Google Scholar 

  29. D. B. Clayton and G. W. Woodbury, Jr., J. Chem. Phys. 55, 3895 (1971).

    Article  ADS  Google Scholar 

  30. D. de Fontaine and R. Kikuchi, in Proceedings of NBS Workshop Applications of Phase Diagrams in Metallurgy and Ceramics, edited by G. C. Carter (National Bureau Standards Special Publication No. 496, Vol. 2, U. S. Department of Commerce, 1978).

    Google Scholar 

  31. J. M. Sanchez and D. de Fontaine, Phys. Rev. B 17, 2926 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  32. S. K. Aggarwal and T. Tanaka, Phys. Rev. B 16, 3936 (1977).

    Article  Google Scholar 

  33. J. W. Cahn, in Interfacial Segregation, edited by W. C. Johnson and J. M. Blakely (ASM, Metals Park, Ohio, 1977).

    Google Scholar 

  34. J. M. Sanchez and D. de Fontaine, Phys. Rev. B 21, 216 (1980).

    Article  ADS  Google Scholar 

  35. J. M. Sanchez and D. de Fontaine, Phys. Rev. B 25, 1759 (1982).

    Article  ADS  Google Scholar 

  36. J. M. Sanchez, F. Ducastelle and D. Gratias, Physica 128A, 334 (1984).

    MathSciNet  ADS  Google Scholar 

  37. J. M. Sanchez, in Theory and Application of the Cluster Variation and Path Probability Methods, edited by J. L. Morán-López and J. M. Sanchez (Plenum, New York, 1996), p. 167.

    Google Scholar 

  38. J. A. Barker, Proc. R. Soc. A216, 45 (1953).

    ADS  Google Scholar 

  39. D. de Fontaine, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull, (Academic Press, 1994), Vol. 47, p. 33.

    Google Scholar 

  40. D. Gratias, J. M. Sanchez and D. de Fontaine, Physica 113A, 315 (1982).

    ADS  Google Scholar 

  41. G. Ceder, Ph. D. Thesis, University of California at Berkeley, 1991.

    Google Scholar 

  42. M. Sluiter, Ph. D. Thesis, University of California at Berkeley, 1988.

    Google Scholar 

  43. In order to help ensure that the Newton-Raphson converged to a local minimum corresponding to an inhomogeneous state, rather than one of the global minima for either of the two homogeneous states (corresponding to homogeneous α or β phase in the supercell), the point correlation variables for the first plane in the supercell were held fixed during the minimizations. In order to check that this constraint did not affect the final results for IPB’s, additional Newton-Raphson minimizations were performed in several cases using as a starting point the set of correlation functions obtained from the constrained minimization. In every case it was found that the subsequent unconstrained minimization converged to the same local minimum as was obtained from the constrained minimization.

    Google Scholar 

  44. B. E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  45. K. B. Alexander, F. K. Legoues, H. I. Aaronson and D. E. Laughlin, Acta Metall. 32, 2241 (1984).

    Article  Google Scholar 

  46. G. Parisi, Statistical Field Theory (Addison-Wesley, Menlo Park, CA, 1988).

    MATH  Google Scholar 

  47. D. de Fontaine, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull, (Academic Press, 1979), Vol. 34, p. 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Asta, M. (1996). Thermodynamic Properties of Coherent Interphase Boundaries in fcc Substitutional Alloys. In: Morán-López, J.L., Sanchez, J.M. (eds) Theory and Applications of the Cluster Variation and Path Probability Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0419-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0419-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8043-6

  • Online ISBN: 978-1-4613-0419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics