Diffuse Scattering of Neutrons in Ni3V and Pt3 V: Test of the Gamma Expansion Method Approximation in a Degenerate Case

  • R. Caudron
  • D. Le Bolloc’h
  • A. Finel
  • M. Barrachin


Our results of in situ diffuse scattering of neutrons in Ni3V and Pt3V are presented. In the Ising model framework, effective pair interactions (EPI) up to the 9th neighbor were extracted from the data. These EPI were used to explain successfully the transition temperature of both compounds, the core structure of the dislocations in Ni3V, and the occurrence of long periods in Pt3V. The need of approximations yielding long-range EPI is stressed. We give a description of the Gamma Expansion Method (GEM). Because of its mean field nature, we expected the GEM to fail in the highly degenerate case of Pt3V. We tested it in that case, and found it completely successful. This gives more confidence in the mean field approximations.


Monte Carlo Spherical Model Diffuse Intensity Random Phase Approximation Diffuse Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ducastelle, Order and Phase Stability in Alloys, edited by F. R. de Boer and D. G. Pettifor, Cohesion and Structure Vol. 3 (North-Holland, Amsterdam, 1991).Google Scholar
  2. 2.
    M. Asta, C. Wolverton, D. de Fontaine, and H. Dreysse, Phys. Rev. B 44, 4907 (1991); 44, 4914 (1991)CrossRefADSGoogle Scholar
  3. W. Schweika and A. E. Carlsson, Phys. Rev. B 40, 4990 (1989).CrossRefADSGoogle Scholar
  4. 3.
    F. Solal, R. Caudron, and A. Finel, in Alloy Phase Stability, edited by G. M. Stocks and A. Gonis, NATO ASI series, series E: applied sciences, (Kluwer Acad. Publ., 1989), Vol. 163, p. 107.Google Scholar
  5. 4.
    A. Finel, M. Barrachin, R. Caudron, and A. François in Metallic alloys, Experimental and Theoretical Perspectives, edited by J. S. Faulkner and R. G. Jordan, Nato ASI series, series E: applied sciences, (Kluwer Acad. Publ., 1994), Vol. 256, p. 215.Google Scholar
  6. 5.
    V. I. Tokar, Phys. Lett. 110A, 453 (1985).MathSciNetADSGoogle Scholar
  7. 6.
    I. V. Masanskii, V. I. Tokar, and T. A. Grishchenko, Phys. Rev. B 44, 4647 (1991).CrossRefADSGoogle Scholar
  8. 7.
    L. Reinhard and S. C. Moss, Ultramicroscopy 52, 232 (1993).CrossRefGoogle Scholar
  9. 8.
    R. Caudron, M. Sarfati, M. Barrachin, A. Finel, F. Ducastelle, and F. Solal, J. Phys. 12, 1145 (1992).Google Scholar
  10. 9.
    J. C. Sparks and B. Borie, in Local Atomic Arrangements studied by X-Ray Diffraction, edited by J. B. Cohen and J. E. Hilliard (Gordon and Breach, 1966).Google Scholar
  11. 10.
    C. L. Lawson and R. J. Hanson, Solving Linear Least Squares Problem, (Prentice- Hall, Englewood-Cliffs, New-Jersey, 1974).Google Scholar
  12. 11.
    A. Finel, Ph.D. thesis, Paris VI, 1987.Google Scholar
  13. 12.
    M. Barrachin, Ph.D. thesis, Paris XI-Orsay, 1993.Google Scholar
  14. 13.
    M. Barrachin, A. Finel, R.Caudron, A. Pasturel, and A. François, Phys. Rev. B 50, 12980 (1994).CrossRefADSGoogle Scholar
  15. 14.
    C. Wolverton and A. Zunger, Phys. Rev. B 52, 8813 (1995).CrossRefADSGoogle Scholar
  16. 15.
    A. François, Ph.D. thesis, Paris VI, 1992.Google Scholar
  17. 16.
    E. Cabet and A. Loiseau, J. Phys. (France) IV colloque C7, Supp. III 3, 2051 (1993).Google Scholar
  18. 17.
    A. Finel, in Statics and Dynamics of Alloy Phase Transformations, edited by A. Gonis and P. E. A. Turchi, NATO ASI series B: Physics, (Plenum Press, New York, 1994), Vol. 319, p. 495.CrossRefGoogle Scholar
  19. 18.
    W. L. Bragg and E. J. Willams, Proc. Roy. Soc. London, Ser. A 145, 699 (1934); 152, 231 (1935).CrossRefADSGoogle Scholar
  20. 19.
    M. A. Krivoglaz, Theory of X-Rays and Thermal Neutron scattering by Real Crystals, (Plenum, New York, 1969).Google Scholar
  21. 20.
    R. H. Brout, Phase Transitions, (Benjamin, New York, 1965).Google Scholar
  22. 21.
    P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids, 4, 71 (1958).CrossRefADSGoogle Scholar
  23. 22.
    P. C. Clapp and S. C. Moss, Phys. Rev. 142, 418 (1966); 171, 754 (1968)CrossRefADSGoogle Scholar
  24. 22.
    S. C. Moss and P. C. Clapp, Phys. Rev. 171, 764 (1968).CrossRefADSGoogle Scholar
  25. 23.
    S. Lefebvre, F. Bley, M. Fayard, and M. Roth, Acta Metall. 29, 749 (1981).CrossRefGoogle Scholar
  26. 24.
    J. B. Staunton, D. D. Johnson, and F. J. Pinski, Phys. Rev. B 50, 1450 (1994).CrossRefADSGoogle Scholar
  27. 25.
    D. W. Hoffman, Met. Trans. 3, 3231 (1972).CrossRefGoogle Scholar
  28. 26.
    W. Schweika and H. G. Haubold, Phys. Rev. B 37, 9240 (1988).CrossRefADSGoogle Scholar
  29. 27.
    B. Schönfeld, I. Reinhard, G. Kostorz, and W.Bührer, Phys. Status. Solidi B 148, 457 (1988).CrossRefADSGoogle Scholar
  30. 28.
    V. Gerold and G. Kern, Acta Metall. 35, 393 (1987).CrossRefGoogle Scholar
  31. 29.
    F. Solal, R. Caudron, F. Ducastelle, A. Finel, and A. Loiseau, Phys. Rev. Lett. 58, 2245 (1987).CrossRefADSGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • R. Caudron
    • 1
    • 2
  • D. Le Bolloc’h
    • 1
    • 2
  • A. Finel
    • 1
  • M. Barrachin
    • 1
  1. 1.Direction des Matériaux (OM)Office National d’Etudes et de Recherches Aérospatiales (ONERA)Châtillon CedexFrance
  2. 2.Laboratoire Leon BrillouinCEN SaclayGif sur Yvette CedexFrance

Personalised recommendations