Adhesion and Invasion of Escherichia Coli

Studies on Function and Regulation
  • T. A. Oelschlaeger
  • J. Morschhäuser
  • C. Meier
  • C. Schipper
  • J. Hacker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 408)


Escherichia coli are well known as part of the intestinal flora of healthy individuals. However, there are several groups of E. coli strains which are important pathogens. These E. coli strains cause intestinal diseases as enteritis, diarrhea, or dysentery. Furthermore, certain E. coli strains are responsible for extraintestinal diseases like urinary tract infections (UTI), sepsis, or meningitis. E. coli are among the most frequent causes for intestinal diseases and urinary tract infections. In order to prevent infection by these microorganisms, it is necessary to understand on a molecular level the pathophysiology of diseases caused by E. coli. It seems reasonable to try to block already the very first steps of infection in order to prevent developement of disease. These very first steps are adhesion and/or invasion to/into host cells. This article will focus on S-fimbriae of UTI and meningitis causing E. coli (MENEC) as an example of an adhesin as a virulence factor as well as on the ability of MENEC and enterohemorrhagic E. coli (EHEC) to invade nonprofessional phagocytes.


Brain Microvascular Endothelial Cell Invasion System Fimbrial Subunit Efficient Invasion Extraintestinal Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ritter, A., Blum, G., Emödy, L., Kerenyi, M., Böck, A., Neuhierl, B., Rabsch, W., Scheutz, F., and Hacker, J. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol. Microbiol. 17:109–121.Google Scholar
  2. 2.
    Hacker, J., Schmidt, G., Hughes, C., Knapp, S., Marget, M., and Goebel., W. 1985. Cloning and characterization of genes involved in production of mannose-resistant, neuraminidase-suseptible (X) fimbriae from a uropathogenic 06:K15:H31 Escherichia coli strain. Infect. Immun. 47:434–440.PubMedGoogle Scholar
  3. 3.
    Schmoll, T., Morschhäuser, J., Ott, M., Ludwig, B., van Die, I., and Hacker, J. 1990. Complete genetic organization and functional aspects of Escherichia coli S fimbrial adhesin determinant: nucleotide sequence of the genes sfa B, C, D, E, F. Microb. Pathog. 9:331–343.PubMedCrossRefGoogle Scholar
  4. 4.
    Moch, T., Hoschützky, H., Jann, K., and Hacker, J. 1987. Isolation and characterization of the alpha-sia- lyl-beta-2,3-galactosyl-specific adhesin from fimbriated Escherichia coli. Proc. Natl. Acad. Sci. USA 84:3462–3466.CrossRefGoogle Scholar
  5. 5.
    Schmoll, T., Hoschützky, H., Morschhäuser, J., Lottspeich, F., Jann, K., and Hacker, J. 1989. Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S fimbrial adhesin determinant of Escherichia coli. Mol. Microbiol. 3:1735–1744.PubMedCrossRefGoogle Scholar
  6. 6.
    Morschhäuser, J., Vetter, V., Emödy, L., and Hacker, J. 1994. Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol. Microbiol. 11:555–566.PubMedCrossRefGoogle Scholar
  7. 7.
    Morschhäuser, J., Vetter, V., Korhonen, T., Uhlin, B.E., and Hacker, J. 1993. Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis. Zbl. Bakt. 278:165–176.Google Scholar
  8. 8.
    Schmoll, T., Ott, M., Oudega, B., and Hacker, J. 1990. Use of a wild-type gene fusion to determine the influence of enviromental conditions on expression of the S fimbrial adhesin in an Escherichia coli pathogen. J. Bacteriol. 172:5103–5111.PubMedGoogle Scholar
  9. 9.
    Hacker, J., Ott, M., and Hof, H. 1993. Effects of low, subinhibitory concentrations of antibiotics on expression of a virulence gene cluster of pathogenic Escherichia coli by using a wild-type gene fusion. Int. J. Antimicrob. Agent 2:263–270.CrossRefGoogle Scholar
  10. 10.
    Elsinghorst, E.A. and Kopecko, D.J. 1992. Molecular cloning of epithelial cell invasion determinants from enterotoxigenic Escherichia coli. Infect. Immun. 60:2409–2417.PubMedGoogle Scholar
  11. 11.
    Miliotis, M., Koornhof, H.J., and Phillips, J.I. 1989. Invasive potential of noncytotoxic enteropathogenic Escherichia coli in an in vitro Henle 407 cell model. Infect. Immun. 57:1928–1935.PubMedGoogle Scholar
  12. 12.
    Donnenberg, M.S., Donohue-Rolfe, A., and Keusch, G.T. 1989. Epithelial cell invasion: an overlooked propertiy of enteropathogenic Escherichia coli associated with the EPEC adherence factor. J. Infect. Dis. 160:452–459.PubMedCrossRefGoogle Scholar
  13. 13.
    Oelschlaeger, T.A., Berrett, T.J., and Kopecko, D.J. 1994. Some structures and processes of human epithelial cells involved in uptake of enterohemorrhagic Escherichia coli 0157:H7 strains. Infect. Immun. 62:5142–5150.PubMedGoogle Scholar
  14. 14.
    Straube, E., Schmidt, G., Marre, R., and Hacker, J. 1993. Adhesion and internalization of E. coli strains expressing various pathogenic determinants. Zbl. Bakt. 278:218–228.Google Scholar
  15. 15.
    Meier, C., Oelschlaeger, T.A., Merkert, H., Korhonen, T.K., and Hacker, J. 1996. Ability of the new born meningitis isolate Escherichia coli IHE 3034 (018:K1:H7) to invade epithelial and endothelial cells. Infect. Immun., in press.Google Scholar
  16. 16.
    Huang, S.-H., Wass, C., Fu, Q., Prasadarao, N.V., Stins, M., and Kim, K.S. 1995. Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of invasion gene ibe10. Infect. Immun. 63:4470–4475.PubMedGoogle Scholar
  17. 17.
    Hsia, R.C., Small, P.L.C., and Bavoil, P.M. 1993. Characterization of virulence genes of enteroinvasive Escherichia coli by Tn phoA mutagenesis: identification of invX, a gene required for entry into HEp-2 cells. J. Bacteriol. 175:4817–1823.PubMedGoogle Scholar
  18. 18.
    Prasadarao, N.V., Wass, C.A., Weiser, J.N. Stins, M.F. Huang, S.-H., and Kim, K.S. 1996. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect. Immun. 64:146–153.PubMedGoogle Scholar
  19. 19.
    Karch, H., Heesemann, J., Laufs, R., O’Brian, A.D., Tacket, C.O., and Levine, M.M. 1987. Aplasmid of enterohemorrhagic Escherichia coli 0157:H7 is required for expression of a new fimbrial antigen and for adhesion to epithelial cells. Infect. Immun. 55:455–461.PubMedGoogle Scholar
  20. 20.
    Yu, J., and Kaper, J.B. 1992. Cloning and characterization of the eae gene of enterohemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 6:411–417.PubMedCrossRefGoogle Scholar
  21. 21.
    Oelschlaeger, T.A., Guerry, P., and Kopecko, D.J. 1993. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl. Acad. Sci. USA 90:6884–6888.PubMedCrossRefGoogle Scholar
  22. 22.
    Prasadarao, N.V., Wass, C.A., and Kim, K.S. 1996. Endothelial cell GlcNAcβl-4GlcNAc epitopes for outer membrane protein A enhance traversal of Escherichia coli across the blood-brain barrier. Infect. Immun. 64:154–160.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • T. A. Oelschlaeger
    • 1
  • J. Morschhäuser
    • 1
  • C. Meier
    • 1
  • C. Schipper
    • 1
  • J. Hacker
    • 1
  1. 1.Institut für Molekulare InfektionsbiologieUniversität WürzburgWürzburgGermany

Personalised recommendations