Advertisement

Anti-Adhesion and Diagnostic Strategies for Oro-Intestinal Bacterial Pathogens

  • Nicklas Strömberg
  • Stefan Ahlfors
  • Thomas Borén
  • Per Bratt
  • Kristina Hallberg
  • Karl-Johan Hammarström
  • Charlotta Holm
  • Ingegerd Johansson
  • Magdalena Järvholm
  • Jan Kihlberg
  • Tong Li
  • Mats Ryberg
  • Golnar Zand
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 408)

Abstract

Bacteria, viruses and eukaryotic cells bind to carbohydrate and protein receptors via cell adhesion molecules (Sharon and Lis, 1993). Adhesion is an essential step in microbial colonization and the development of infections, as well as in cell to cell communication, which affects leukocyte migration and tissue development (Paulson, 1993; Lasky, 1993). Anti-adhesion agents, such as carbohydrate and peptide receptor mimetics, thus represent potential therapeutic agents for the treatment of microbial infections, cancer and inflammatory diseases.

Keywords

Dental Caries Dental Plaque Biological Specificity Partner Specificity Residue Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

References

  1. Sharon, N. and Lis, H. (1993) Carbohydrates in cell recognition. Scientific American. 268 (1), pp. 82–89.PubMedCrossRefGoogle Scholar
  2. Paulson, J.C. (1993) Selectin/carbohydrate-mediated adhesion of leucocytes. In: Adhesion. Its role in inflammatory disease. Harlan, J.M. and Liu, D.Y. eds. pp 19–42, W.H. Freeman and Co., New York.Google Scholar
  3. Lasky, L.A. (1993) The homing receptor (LECAM1/L selectin): A carbohydrate-binding mediator of adhesion in the immune system. In: Adhesion. Its role in inflammatory disease. Harlan, J.M. and Liu, D.Y. eds. pp 19–42, W.H, Freeman and Co., New York.Google Scholar
  4. Karlsson K.-A. (1989) Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. (58) pp 309–350.PubMedCrossRefGoogle Scholar
  5. Hultgren, SJ., Normark, S. and Abraham, S.N. (199l) Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu. Rev. Microbiol. (45) pp. 383–415.CrossRefGoogle Scholar
  6. Kihlberg, J., Hultgren, S.J., Normark, S. and Magnusson, G. (1989a) Probing of the combining site of the PapG adhesin of uropathogenic Escherichia coli bacteria by synthetic analogues of galabiose. J. Am. Chem. Soc. III, pp. 6364–6368.CrossRefGoogle Scholar
  7. Weiss, W., Brown, J.H., Cusack, S., Paulsson, J.C., Skehel, J.J. and Wiley, D.C.(1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature (333) pp. 426–431.CrossRefGoogle Scholar
  8. Firon, N., Ashkenazi, S., Mirelman, D., Ofek, I. and Sharon, N. (1987) Aromatic alpha glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. (55) pp.472–476.PubMedGoogle Scholar
  9. Hultgren, S.J., Abraham, S., Caparon, M., St. Geme III, J.W. and Normark, S. (1993) Pilus and nonpilus bacterial adhesins: Assembly and function in cell recognition. Cell, 73 pp. 887–901.PubMedCrossRefGoogle Scholar
  10. Strömberg, N., Marklund, B.-I., Lund, B., liver, D., Hamers, A., Gaastra, W., Karlsson, K.-A. and Normark, S. (1990) Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Galαl-4G±l-containing isoreceptors. EMBO J. (9) pp. 2001–2010.PubMedGoogle Scholar
  11. Strömberg, N., Nyholm, P.-G., Pascher, I. and Normark, S. (1991) Saccharide orientation at the cell surface affects glycolipid receptor function. Proc. Natl. Acad. Sci. (88) pp. 9340–9344.PubMedCrossRefGoogle Scholar
  12. Cossart, P., Boquet, P., Normark, S. and Rappuoli, R. (1996) Cellular microbiology emerging. Science. 271 pp. 315–316.PubMedCrossRefGoogle Scholar

Anti-Adhesion and Diagnostic Strategies

  1. Gibbons, R.J. (1989) Bacterial adhesion to oral tissues: A model for infectious diseases J. Dent. Res. 68 (5) pp. 750–760.PubMedCrossRefGoogle Scholar
  2. Azen, E.A. (1993) Genetics of salivary protein polymorphisms. Crit. Rev. Oral Biol. Med. (4) pp. 479–485.PubMedGoogle Scholar
  3. Hay, D.I. and Moreno, E.C. (1989) Statherin and the acidic proline-rich proteins. In: Human saliva: Clinical chemistry and microbiology. Vol I. pp. 132–150. Tenovuo, J.O., ed. CRC Press, inc., Boca Raton, Florida.Google Scholar
  4. Lamkin, M.S. and Oppenheim, F.G. (1993) Structural features of salivary function. Crit. Rev. Oral Biol. Med. 4(3/4) pp. 251–259.PubMedGoogle Scholar
  5. Kolenbrander, RE. (1988) Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Ann. Rev. Microbiol. (42) pp. 627–656.CrossRefGoogle Scholar
  6. Strömberg, N., Borén, T., Carlén, A. and Olsson, J. (1992) Salivary receptors for GalNAcβ-sensitive adherence of Actinomyces spp.: Evidence for heterogenous GalNAcβ and proline-rich protein receptor properties. Infect. Immun. (60) pp. 3278–328.PubMedGoogle Scholar
  7. Strömberg, N. and Borén, T. (1992) Actinomyces tissue specificity may depend on differences in receptor specificity for GalNAcβ-containing glycoconjugates. Infect. Immun. (60) pp. 3268–3277.PubMedGoogle Scholar
  8. Bratt, R, Landys, D., Borén, T. and Strömberg, N. (1996a) Secretory immunoglobulin A heavy chains present Galβ/GalNAcβ-saccharide receptors for Actinomyces naeslundi. Manuscript in preparation.Google Scholar
  9. Hammarström, K.-J., Hallberg, K., Dahlén, G., Gibbons, R.J., Hay, D.I. and Strömberg, N. (1996) The GalNAcβ- and PRP-binding specificities are common among Actinomyces spp. from plaque and buccal surfaces but absent among tongue isolates. Manuscript in preparation.Google Scholar
  10. Strömberg, N., Nyholm, P.-G. and Kolenbrander, P. (1996a) Actinomyces specificity for Streptococci depends on different GalNAcβ receptor epitopes on streptococcal capsular polysaccharides. Manuscript in preparation.Google Scholar
  11. Hallberg, K., Öhman, U., Hammarström, K.-J. and Strömberg, N. (1996) Association of type-1 and type-2 fimbrial genes with APRP and GalNAcβ specificity and Actinomyces naeslundii genospecies. Manuscript in preparation.Google Scholar
  12. Järvholm, M., Bratt, P., Hallberg, K., Johansson, I., Hay, D.I. and Strömberg, N. (1996) Different acidic proline-rich protein and statherin binding-modes among bacteria colonizing tooth surfaces. Manuscript in preparation.Google Scholar
  13. Strömberg, N. and Karlsson, K.-A. (1990) Characterization of the binding of Actinomyces naeslundi (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach. (265) pp. 11251–11258.Google Scholar
  14. Bratt, P., Kolenbrander, P. and Strömberg, N. (1996b) GalNAcβ-receptors mediates multiple intra- and intergeneric interactions among human dental plaque bacteria. Manuscript in preparation.Google Scholar
  15. Abeygunawardana, C., Bush, C.A. and Cisar J.O. (1991) Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence. Biochemistry 30 pp. 6528–6540.PubMedCrossRefGoogle Scholar
  16. Abeygunawardana, C., Bush, C.A. and Cisar J.O. (1990) Complete structure of the polysaccharide from Streptococcus sanguis J22. Biochemistry (29) pp. 234–248.PubMedCrossRefGoogle Scholar
  17. Landin, J. and Pascher, I. (1995) Ab initio and semiempirical conformation potentials for phospholipid head groups. J. Phys. Chem. (99) pp. 4471–4485.CrossRefGoogle Scholar
  18. Homans, S.W., Dwek, R.A., Boyd, J., Mahmoudian, M., Richards, W.G. and Rademacher, T.W. (1986) Conformational transitions in N-linked oligosaccharides. Biochemistry (25) pp. 6342–6350.PubMedCrossRefGoogle Scholar
  19. Hay, D.I., Gibbons, R.J., Schlessinger, D.H. and Schluckebier. (1996) Adhesion of Actinomyces viscosus LY7 to human salivary acidic proline-rich proteins: Effects of substitutions at residues 149 and 150. Manuscript in press.Google Scholar
  20. Gibbons, R.J., Hay, D.I. and Schlessinger, D.H. (1991) Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect. Immun (59) pp. 2948–2954.PubMedGoogle Scholar
  21. Yeung, M.K. and Cisar J.O. (1990) Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J. Bacteriol. (172) pp. 2462–2468.PubMedGoogle Scholar
  22. Karlsson, A., Hammarström, K.-J., Markfjäll, M., Dahlgren, C. and Strömberg, N. (1996) The capacity of clinical isolates of Actinomyces to activate the neutrophil NADH-oxidase is related to the exposure of bacterial structures reacting with mammalian cell surface glycoconjugates containing GalNAcβ and sialic acid. Manuscript in preparation.Google Scholar
  23. Strömberg, N., Dahlén, G., Markfjäll, M., Kolenbrander, P. and Sandros, J. (1996) Modulation of human dental plaque formation by an anti-adherence carbohydrate. Manuscript in preparation.Google Scholar
  24. Carlén, A., Bratt, P., Olsson, J. and Strömberg, N. (1996) Agglutinin and acidic proline-rich protein receptor patterns modulate bacterial adherence and colonization patterns on tooth surfaces. Submitted manuscript.Google Scholar
  25. Nordlund, Å., Carlsson, J., Ericson, T., Johansson, I., Sjöström, M. and Strömberg, N. (1996) Evaluation of factors related to dental caries incidence: A mulivariate approach. Manuscript in preparation.Google Scholar
  26. Marshall, B. (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, pp. 1273–1275.Google Scholar
  27. Forman, D., Webb, P., Newell, D.G., Coleman, M., Palli, D., Møller, H., Hengels, K., Elder, K. and DeBacker, G. (1993) An international association between Helicobacter pylori infection and gastric cancer. Lancet (341) pp. 1359–1362.CrossRefGoogle Scholar
  28. Li, C., Musich, PR., Ha, T., Ferguson Jr, D.A., Patel, N.R., Chi, D.S. and Thomas, E. (1995) High prevalence of Helicobacter pylori in saliva demonstrated by a novel PCR assay. J. Clin. Pathol, 48 (7). pp. 662–665.PubMedCrossRefGoogle Scholar
  29. Falk, P., Roth, K.A., Borén, T., Westblom, T.U., Gordon, J.I. and Normark, S. (1993) An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proc. Natl. Acad. Sci. USA. (90) pp. 2035–2039.PubMedCrossRefGoogle Scholar
  30. Borén, T., Normark, S. and Falk, P. (1994) Molecular basis for host recognition in Helicobacter pylori: Trends in Microbiology. (2) pp. 221–228.PubMedCrossRefGoogle Scholar
  31. Borén, T., Falk, P., Roth, K.A., Larson, G. and Normark, S. (1993) Attachment of Helicobacter pylori to gastric epithelium mediated by blood group antigens. Science. (262) pp. 1892–1895.PubMedCrossRefGoogle Scholar
  32. Borén, T. and Falk, P. (1994) Blood type and the risk of gastric disease: Response letter. Science.(264) pp. 1387–1388.PubMedCrossRefGoogle Scholar
  33. Liver, D., Arnquist, A. and Borén, T. (1996) Purification and characterization of the Helicobacter pylori blood group antigen binding (BAB)-adhesin. Manuscript in preparation.Google Scholar
  34. Leffler, H. and Svanborg Eden, C. (1986) In Microbial Lectins and Agglutinins, D. Mirleman ed., John Wiley and Sons, New York, pp. 82.Google Scholar
  35. Kuehn, J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T. and Hultgren, S.J. (1993) Structural basis of pilus subunit recognition by the PapD chaperone. Science (262) pp. 1234–1241.PubMedCrossRefGoogle Scholar
  36. Bock, K., Breimer, M.E., Brignole, A., Hansson, G.C., Karlsson, K.-A., Larsson, G., Leffler, H., Samuelsson, B.E., Strömberg, N., Svanborg-Eden, C., and Thurin, J. (1985) Specificity of binding of a strain of uropathogenic Escherichia coli to Galαl-4G±l-containing glycosphingolipids. J. Biol. Chem. (260) pp. 8545–8551.PubMedGoogle Scholar
  37. Kihlberg, J., Frejd, T., Jansson, K. and Magnusson, G. (1986) Synthetic receptor analogues: Preparation of the 3-O-methyl, 3-C-methyl, and 3-deoxyderivatives of methyl 4-O-α-D-galactopyranosyl-β-D-galac- topyraniside (methyl β-D-galabiose). Carbohydr. Res. (152) 113–130.CrossRefGoogle Scholar
  38. Kihlberg, J., Frejd, T., Jansson, K., Sundin, A. and Magnusson, G. (1988) Synthetic receptor analogues: Preparation and calculated conformations of the 2-deoxy, 6-O-methyl, 6-deoxy, and 6-deoxy-6-fluoro derivatives of 4-O-α-D-galactopyranoside (methyl β-D-galabiose). Carbohydr. Res. (176) pp. 271–286.PubMedCrossRefGoogle Scholar
  39. Kihlberg, J., Frejd, T., Jansson, K., Kitzing, S. and Magnusson, G. (1989b) Preparation and calculated conformations of the 2’-, 3’-, 4’-, and 6’-deoxy, 3’-0-methyl, 4’-epi, and 4’- and 6’-deoxy-fluoro derivatives of methyl 4-O-α-D-galactopyranosyl-p-D-galctopyranoside (methyl β-D-galabiose). Carbohydr. Res. (185) 171–190.PubMedCrossRefGoogle Scholar
  40. Striker, R., Nilsson, U., Stoneciper, A., Magnusson, G. and Hultgren, S.J. (1995) Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Mol. Microbiol. (16) pp. 1021.PubMedCrossRefGoogle Scholar
  41. Strömberg, N., Ryd, M., Lindberg, A.A. and Karlsson K.-A. (1988) Studies on the binding of bacteria to glycolipids. Febs Letters. (232) pp. 193–198.PubMedCrossRefGoogle Scholar
  42. Knight, S. and Hultgren, S. (1996) Personal communication.Google Scholar
  43. Hultgren, S.J., Lindberg, F., Magnusson, G., Kihlberg, J., Tennent, J.M. and Normark, S. (1989) The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. USA (86) pp.4357–4361.PubMedCrossRefGoogle Scholar
  44. Flemmer, K., Xu, Z., Pinkner, J.S., Hultgren, S.J. and Kihlberg, J. (1995) Peptides inhibit complexation of the bacterial chaperone PapD and reveal potential to block assembly of virulence associated pili. BioMed. Chem. Lett. (5) pp. 927.CrossRefGoogle Scholar
  45. Xu, Z., Jones, C.H., Haslam, D., Pinkner, J.S., Dodson, K., Kihlberg, J. and Hultgren, S.J. (1995) Molecular defection of PapD interaction with PapG reveals two chaperone binding sites. Mol. Microbiol. (16) pp 1011.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Nicklas Strömberg
    • 1
  • Stefan Ahlfors
    • 2
  • Thomas Borén
    • 1
  • Per Bratt
    • 1
  • Kristina Hallberg
    • 1
  • Karl-Johan Hammarström
    • 1
  • Charlotta Holm
    • 1
  • Ingegerd Johansson
    • 1
  • Magdalena Järvholm
    • 1
  • Jan Kihlberg
    • 2
  • Tong Li
    • 1
  • Mats Ryberg
    • 1
  • Golnar Zand
    • 1
  1. 1.Department of Oral Biology Faculty of OdontologyUmeå UniversityUmeåSweden
  2. 2.Department of Organic Chemistry 2 Lund Institute of TechnologyUniversity of LundLundSweden

Personalised recommendations