Lipopolysaccharide’s Role in the Association of Salmonella Cells to the Mouse Intestine Studied By Ribosomal in Situ Hybridization

  • K. A. Krogfelt
  • T. R. Licht
  • S. Molin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 408)


The majority of microbes most probably exist in nature in close association with particular surfaces. The adhesive properties of microorganisms were first recognized at the beginning of this century. Since then it has been shown that bacterial adhesion is important in plant and animal hosts, pathogenesis, medical devices, aquatic and soil ecosystems, biodegradation, and industrial processes.


Large Intestine Mouse Intestine Microtome Section Intestinal Mucus SL5319 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borriello, S. P. 1986. Microbial flora of the gastrointestinal tract, p. 2–16. in M. J. Hill (ed.), Microbial metabolism in the digestive tract. CRC Press, Inc. Roca Raton, FL.Google Scholar
  2. 2.
    Camprubi, S., S. Merino, J. F. Guillot, and J. M. Tomás. 1993. The role of the O-antigen lipopolysaccharide on the colonization of in vivo of the germfree chicken gut by Klebsiella pneumoniae. Microb. Pathog. 14:433–440.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen, P. S., J. C. Arruda, T. J. Williams, and D. C. Laux. 1985. Adhesion of a human fecal Escherichia coli strain to mouse colonic mucus. Infect. Immun. 48:139–145.PubMedGoogle Scholar
  4. 4.
    Craven S.E. 1994. Altered colonising ability for the cecae of broiler chicks by lipopolysaccharide-deficient mutants of Salmonella typhimurium. Avian Diseas. 38:401–408.CrossRefGoogle Scholar
  5. 5.
    Finegold, S. M., V. L. Sutter and G. E. Mathisen. 1983. Normal indigenous intestinal flora, p. 3–31. in D. J. Hentges (ed.), Human intestinal microflora in health and disease. Academic Press, New York.Google Scholar
  6. 6.
    Franklin, D. P., D. C. Laux, T. J. Williams, M. C. Falk and P. S. Cohen. 1990. Growth of Salmonella typhimurium SL5319 and Escherichia coli F-18 in mouse cecal mucus: role of peptides and iron. FEMS Microbiol Ecol. 74, p. 229–240.CrossRefGoogle Scholar
  7. 7.
    Käthy, H. 1985. Antibody response to bacterial surface components, p. 96–97. In T. K. Korhonen (ed.), E.A. Dawes and P. H. Mäkelä, Enterobacterial surface antigens, FEMS symposion No.25, Elsevier, Amsterdam, New York, Oxford.Google Scholar
  8. 8.
    Krivan, H. C., D. P. Franklin, W. Wang, D. C. Laux and P. S. Cohen. 1992. Phosphatidylserine found in intestinal mucus serves as a sole source of carbon and nitrogen for salmonellae and Escherichia coli. Infect. Immun. 60, p. 3943–3946.Google Scholar
  9. 9.
    Krogfelt K.A. 1991. Bacterial Adhesion: Genetics, biogenesis, and role in pathogenesis of fimbrial adhesions of Escherichia coli Rev. Infect. Diseas., 13:721–735CrossRefGoogle Scholar
  10. 10.
    Krogfelt K. A. 1993. Cellular Adhesion. In: McGraw-Hill Yearbook of Science and Technology 1994. McGraw-Hill, Inc. pp 68–70.Google Scholar
  11. 11.
    Krogfelt, K. A., L. K. Poulsen and S. Molin. 1993. Identification of coccoid Escherichia coli BJ4 cells in the large intestine of streptomycin-treated mice. Infect. Immun. 61, p. 5029–5034.PubMedGoogle Scholar
  12. 12.
    Larsen, N., Olsen, G. J., B. L. Maidak, M. J. McCaughey, R. Overbeek, T. J. Macke, T. L. Marsh and C. R. Woese. 1993. The ribosomal RNA database project. Nuc. Acid Res. 21, p. 3021–3023.CrossRefGoogle Scholar
  13. 13.
    Licht T.R., K.A. Krogfelt, Cohen P.S., Poulsen L.K. Urbace J.and S. Molin. 1996. Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization Infect. Immun, submitted.Google Scholar
  14. 14.
    McCormick, B. A., B. A. D. Stocker, D. C. Laux, and P. S. Cohen. 1988. Roles of motility, Chemotaxis, and penetration through and growth in intestinal mucus in the ability of an avirulent strain of Salmonella typhimurium to colonize the large intestine of streptomycin-treated mice. Infect. Immun. 56:2209- 2217.PubMedGoogle Scholar
  15. 15.
    Myhal, M. L., D. C. Laux and P. S. Cohen. 1982. Relative colonizing abilities of human fecal and K12 strains of Escherichia coli in the large intestines of streptomycin-treated mice. Eur. J. Clin. Microbiol. 1, p. 186–192.PubMedCrossRefGoogle Scholar
  16. 16.
    Nevola, J. J., B. A. D. Stocker, D. C. Laux, and P. S. Cohen. 1985. Colonization of the mouse intestine by an avirulent Salmonella typhimurium strain and its lipopolysaccharide-defective mutants. Infect. Immun. 50:152–159.PubMedGoogle Scholar
  17. 17.
    Nevola, J. J., D. C. Laux, and P. S. Cohen. 1987. In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent smooth strain of Salmonella typhimurium and its Lipopolysaccharide-deficient mutant. Infect. Immun. 55:2884–2890.PubMedGoogle Scholar
  18. 18.
    Neidhardt, F. C. and B. Magasanik. 1960. Studies on the role of ribonucleic acid in the growth of bacteria. Biochem. Biophys. Acta 42, p. 99–116.PubMedCrossRefGoogle Scholar
  19. 19.
    Ofek I. and E.H. Beachey. 1980. General  concepts and principles of bacterial adherence in animals and man. In: Bacterial Adherence Ed.: E.H. Beachey, Chapman & Hall, p. 1–30Google Scholar
  20. 20.
    Poulsen, L. K., G. Ballard and D. A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59, p. 1354–1360.PubMedGoogle Scholar
  21. 21.
    Poulsen L. K., F. Lan, C. S. Kristensen, P. Hobolth, S. Molin and K.A. Krogfelt. 1994. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect. Immun. 62, p. 5191–5194.PubMedGoogle Scholar
  22. 22.
    Poulsen L. K., T. R. Licht, C. Rang, K.A. Krogfelt and S. Molin, 1995, The physiological state of E. coli BJ4 growing in the large intestine of streptomycin-treated mice. J. Bact. 177:5840–5845PubMedGoogle Scholar
  23. 23.
    Schaechter, M., O. Maaløe and N. O. Kjeldgaard, 1958, Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium J. Gen. Microbiol. 19, p. 592–606.Google Scholar
  24. 24.
    Stahl, D. A. and R. I. Amann. 1991. Development and application of nucleic acid probes, p. 205–248. in E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York.Google Scholar
  25. 25.
    Wadolkowski, E. A., D. C. Laux and P. S. Cohen. 1988. Colonization of streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: Role of growth in mucus. Infect. Immun. 56, p. 1030–1035.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • K. A. Krogfelt
    • 1
  • T. R. Licht
    • 1
    • 2
  • S. Molin
    • 2
  1. 1.Department of Gastrointestinal InfectionsStatens SeruminstitutCopenhagen SDenmark
  2. 2.Department of MicrobiologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations