Advertisement

Studies of the Phytotoxicity of Saponins on Weed and Crop Plants

  • Robert E. Hoagland
  • Robert M. Zablotowicz
  • Krishna N. Reddy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 405)

Abstract

Several saponins or sapogenins including β-escin, betulin, β-glycyrrhetinic acid, hecogenin, oleandrin, and oleanolic acid were tested in the laboratory, growth chamber, and greenhouse on various weed and crop species. Seed germination, root and shoot growth after root, foliar, or soil application, electrolyte leakage from leaf discs, and greening of etiolated plant tissues were monitored. Esterase activity using fluorescein diacetate (FDA) and p-nitrophenyl butyrate (PNPB) was also assayed. The compounds had differential effects on these parameters, depending on the species. The effects of these compounds on electrolyte leakage ranged from no effect to a 10-fold increase above untreated tissue levels after 72 h. Escin increased FDA activity up to 35% above untreated tissue, but other compounds caused no effect or reduced FDA activity. PNPB activity was generally not affected. In greening studies of excised tissue, escin reduced chlorophyll production by 90–100% in several species, with other compounds giving intermediate or no effects. Foliar application (1.0 mM) in the greenhouse had no substantial effect (visible or shoot biomass) on 10 species. However, in short-term (8 to 13 day) tests, β-escin, applied to soil at 88 and 350 μmol/kg soil, drastically reduced emergence in barnyardgrass (Echinochloa crus-galli L. Beauv.), hemp sesbania [Sesbania exaltata (Raf.) Rydb. ex A.W. Hill], wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.]. β-Escin also reduced growth in all species but soybean, and barnyardgrass was the most sensitive species tested. Results are discussed in relation to the role of these compounds as plant growth-regulating natural products.

Keywords

Cover Crop Electrolyte Leakage Oleanolic Acid Root Fresh Weight Triterpenoid Saponin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araeson, P.A. and R.D. Duibin. Sensitivity of fungi to alpha—tomatine. Phytopathology 58:536 (1968).Google Scholar
  2. 2.
    Assa, Y., S. Shang, B. Gestebner, Y. Tencer, Y. Birk, and A. Bondi. Interaction of alfalfa saponin with components of the erythrocyte membrane in hemolysis. Biochinu Biophys. Acta 307:83 (1973).CrossRefGoogle Scholar
  3. 3.
    Ringhamj A.D. and R.W. Horne. Action of saponin on biological cell membranes. Nature 196:952 (1962).CrossRefGoogle Scholar
  4. 4.
    Barnes, J.D., L. Balaguer, E. Manriques, S. Elvira, and A.W. Davison. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls-A and chlorophylls-B in lichens and higher plante. Environ. Exptl Bot. 32:85 (1992).CrossRefGoogle Scholar
  5. 5.
    Basu, N. and R.P. Rastogi. Triterpenoid saponins and sapogenins. Phytochemistry 6:1249 (1967).CrossRefGoogle Scholar
  6. 6.
    Bhowmik, P.C. and J.D. Doll. Corn and soybean response to allelopathic effects of weed and crop residues. Agron. J. 74:601 (1982).CrossRefGoogle Scholar
  7. 7.
    Bowyer, P, B.R. Clark, P. Lunness, M.J. Daniels, and A.E. Osbourn. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 761:311 (1995).Google Scholar
  8. 8.
    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein lrftltying the principle of protein—dye binding. AnaL Biochem. 72:248 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    Bradow, J.M. “Germination Regulation by Amaranthus palneri and Ambrosia artemisiifolia”, pp. 285–300 in The Chemistry of Allelopathy. Biochemical Interactions Among Plants. ACS Symp. Ser. 268. A.C. Thompson (Ed.) Am. Chem. Soc. Washington, DC (1985).CrossRefGoogle Scholar
  10. 10.
    Budavari, S. (Ed.) “Escin” #3644, p. 58, in The Merck Index, 11th Edition. Merck and Co., Inc. Rahway, NJ (1989).Google Scholar
  11. 11.
    Camm, E.L. and G.H.N. Towers. Phenylalanine ammonia—lyase. Phytochemistry 12:961 (1973).CrossRefGoogle Scholar
  12. 12.
    Christian, D.A. and L.A. Hadwiger. Pea saponins in the pea—Fusarium solani interaction. ExptL Mycology 13:419 (1989).CrossRefGoogle Scholar
  13. 13.
    Défago, G. and H. Kern. Induction of Fusarium solani mutants insensitive to tomatine; their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiol Plant Pathol. 22:29 (1983).Google Scholar
  14. 14.
    Duke, S.O. “Plant Terpenoids as Pesticides” pp. 269–295 in Handhook of Natural Toxins, Vol. 6, Toxicology of Plant and Fungal Compounds. R.F. Keeler and A.T.Tu (Eds.) Marcel Dekker, Inc., New York (1991).Google Scholar
  15. 15.
    Duke, S.O. and W.H. Kenyon. “Peroxidizing Activity Determined by Cellular Leakage”, pp. 61–66 in Target Assays for Modern Herbicides and Related Phytotoxic Compounds. P. Böger and G. Sandmann (Eds.) Lewis Publishers, Boca Raton, FL (1993).Google Scholar
  16. 16.
    Fischer, N.H. and L. Ouijano. “Allelopathic Agents from Common Weeds: Amaranthus pabneri, Ambrosia artemisiifolia, and Related Weeds”, pp. 133–148 in The Chemistry of Allopathy Biochemical Interactions Among Plants. ACS Symp. Ser. 268. A.C. Thompson (Ed.) Am. Chem. Soc. Washington, DC (1985).CrossRefGoogle Scholar
  17. 17.
    Fischer, N.H. “Plant Terpenoids as Allelopathic Agents”, pp. 377–398 in Ecological Chemistry and Biochemistry of Plant Terpenoids. J.B. Harborne and F.A. Tomas-Barberan (Eds.) Clarendon Press, New York (1991).Google Scholar
  18. 18.
    Glauret, A.M., J.T. Dingle, and J. A. Lucy. Action of saponin on biological cell membranes. Nature 196:953 (1962).CrossRefGoogle Scholar
  19. 19.
    Gommori, K., F. Miyamoto, Y. Sbibata, T. Higashi, S. Sanada, and J. Shoji. Effects of ginseng saponins on cholesterol metabolism. 2. Effects of ginsenosides on cholesterol synthesis by liver slices. Chem. Pharm. Bull Jpn. 24:2985 (1976).Google Scholar
  20. 20.
    Guilbault, G.G. and D.N. Kramer. Fluorometric determination of lipase, acylase, alpha- and garnma-chyrnotrypsin and inhibitors of these enzymes. AnaL Chem. 36:409 (1964).CrossRefGoogle Scholar
  21. 21.
    Harborne, J.B. and H. Baxter (Eds.) “Triterpenoid Saponins”, pp. 670–688 in Phytochemical Dictionary, A Handbook of Bioactive Compounds from Plants. Taylor and Francis Press, London (1993).Google Scholar
  22. 22.
    Henry, M., A. Rahier, and M. Taton. Effect of gypsogenin 3,0-glucuronide pretreatment of Gypsophila paniculata and Saponaria officinalis cell suspension cultures on the activities of microsomal 2,3-oxidosqualene cycloartenol and amyrin cyclases. Phytochemistry 31:3855 (1992).CrossRefGoogle Scholar
  23. 23.
    Hiscox, J.D. and G.F. Israelstam. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332 (1979).CrossRefGoogle Scholar
  24. 24.
    Hostettmann, K. and A. Marston. “Triterpene Saponins — Pharmacological and Biological Properties”, pp. 232–286 in Saponina. Cambridge university Press, New York (1995).Google Scholar
  25. 25.
    Jurzysta, M. Effect of saponins isolated from seeds of hicerene on germination and growth of cereal seedlings. Zesz. Nauk U.M.K. Torum, Ser. Biol. 13:253 (Polish) (1970).Google Scholar
  26. 26.
    Jurzysta, M. Chemical characteristics of saponins from Medicago lupulina seeds. Proc. 11th Polish Biochem. Soc., p. 18. Bialystok, Poland (1973).Google Scholar
  27. 27.
    Kesselmeir, J. and H.G. Ruppel. Relations between saponin concentration and prolamellar body structures in etioplasts of Avena sativa during greening and re-etiolating and in etioplaste of Hordeum vulgare and Pisum sativum. Z Pflanzenphysiol., Bd. 93:171 (1979).Google Scholar
  28. 28.
    Kudou, S., M. Tonomura, C. Tsukamoto, M. Shimoyamada, M. Uchida, and K. Okubo. Isolation and structural elucidation of the major genuine soybean saponin. Biosci BiotechnoL Biochem. 56:142 (1992).CrossRefGoogle Scholar
  29. 29.
    Leshem, Y. and J. Levin. The effect of growing alfalfa on subsequent cotton plant development and on nitrate formation in peat soil. Plant Soil 50:323 (1978).CrossRefGoogle Scholar
  30. 30.
    Luning, H.U., B.G. Waiyaki, and E. Schlösser. Role of saponins in antifungal resistance. 8. Interactions of Avena sativa — Fusarium avenaccum. PhytopaihoL Z. 92:338 (1978).CrossRefGoogle Scholar
  31. 31.
    Lütz, C. and S. Klein. Biochemical and cytologies! observations on chloroplast development. VI. Chlorophylls and saponins in prolamellar bodies and prothy lakoids separated from etioplasts of etiolated Avena sativum L. leaves. Z. PflanzenphysioL Bd. 95:227 (1979).Google Scholar
  32. 32.
    Mahato, S.B., A.M. Ganguly, and N.P. Sahu. Steroid saponins. Phytochemistry 21:959 (1982).CrossRefGoogle Scholar
  33. 33.
    Marston, A., F. Gamer, S.F. Dossaji, and K. Hostettmann. Fungicidal and molhiscicidal saponins from Dolichos kilimandscharicus. Phytochemistry 27:1325 (1988).CrossRefGoogle Scholar
  34. 34.
    Medzon, E.L. and M.L. Brady. Direct measurement of acetyfesterase in living protist cells. J. Bacteriol, 97:402 (1969).CrossRefGoogle Scholar
  35. 35.
    Mishustin, B.N. and A.N. Naumova. Secretion of toxic substances by alfalfa and their effect on cotton and soil microflora. Akad. Nauk USSR Izvestiya, Ser. Biol. 6:3 (Russian) (1955).Google Scholar
  36. 36.
    Nishida, K., Y. Ohta, Y. Araki, M. Ito, Y. Nagamura, and I. Ishiguro. Inhibitory effects of “Group A Saponin” and “Group B Saponin” fractions from soybean seed hypocotyls on radical—initiated lipid peroxidation in mouse liver microsomes. J. Clin, Biochem. Nutr. 15:175 (1993).CrossRefGoogle Scholar
  37. 37.
    Nisius, A. The stromacentre in Avena plast ids: an aggregation of β-glucosidase responsible for the activation of oat—leaf saponins. Planta 173:474 (1988).CrossRefGoogle Scholar
  38. 38.
    Nord, E.C. and G.R. Van Atta. Saponin — a seed germination inhibitor. Forest Sei. 6:350 (1960).Google Scholar
  39. 39.
    Ohminami, K., H. Okuda, T. Hami, I. Kitagawa, M. Yoshikawa, S. Arichi, and T. Hayashi. Effect of soyasaponins on liver injury. J. Jpn. Soc. Nutr. Food Sci. 34:105 (1981).Google Scholar
  40. 40.
    Okhani, K., S. Mavi, and K. Hostettmann. Mulluscicidal and antifungal triterpenoid saponins from Rapanea melanophloeos leaves. Phytochemistry 33:83 (1993).CrossRefGoogle Scholar
  41. 41.
    Oleszek, W. Allelopathic potentials of alfalfa (Medicago sativa) saponins: Their relation to antifungal and hemolytic activities J. Chem. Ecol. 19:1063 (1993).CrossRefGoogle Scholar
  42. 42.
    Oleszek, W. and M. Jurzysta. The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments. Plant Soil 98:67 (1987).CrossRefGoogle Scholar
  43. 43.
    Osbourn, A.E., B.R. Clarke, J. Dow, and M. Daniels. Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae. PhysioL MoL Plant Pathol. 38:301 (1991).CrossRefGoogle Scholar
  44. 44.
    Pedersen, M.W. Effect of alfalfa saponin on cottonseed germination. Agron. J. 57:516 (1965).CrossRefGoogle Scholar
  45. 45.
    Pedersen, M.W., B. Berrang, M.E. Wall, and K.H. Davis, Jr. Modification of saponin characteristics of alfalfa by selection. Crop Sci. 13:731 (1973).CrossRefGoogle Scholar
  46. 46.
    Pegg, G.F. and G.F. Woodward. Synthesis and metabolism of α-tomatine in tomato isolines in relation to resistance to VerticilUum albo—atrum. PhysioL Mol Plant Pathol. 28:187 (1986).CrossRefGoogle Scholar
  47. 47.
    Rademacher, W. “Gibberellins: Metabolic Pathways and Inhibitors of Biosynthesis”, pp. 127–145 in Target Sites of Herhicida Action. P. Boger and G. Sandmann (Eds.) CRC Press, Boca Raton, FL, (1989).Google Scholar
  48. 48.
    Rice, EX. Allelopathy — An Update. Bot. Rev. 45:15 (1979).CrossRefGoogle Scholar
  49. 49.
    Rice, E.L. “Allelopathic Effects of Weeds on Crop Plants” pp. 38–77 in Biological Control of Weeds and Plant Diseases. Univ. of Oklahoma Press, Norman (1995).Google Scholar
  50. 50.
    Roy, S., A.K. Dutta, and D.P. Chakraborty. Amasterol, an ecdysone precursor and a growth inhibitor from Amaranthus viridis. Phytochemistry 21:2417 (1982).CrossRefGoogle Scholar
  51. 51.
    Sakakibara, K., Y. Shibata, T. Higashi, S. Sanada, and J. Shoji. Effect of ginseng saponins on cholesterol metabolism. 1. Level and synthesis of serum and liver cholesterol in rats treated with ginsenosides. Chem. Pharm. Bull Jpn. 23:1009 (1975).Google Scholar
  52. 52.
    Schönbeck, F. and E. Schlösser. “Preformed Substances as Potential Protectants”, pp. 653–678 in EncyL Plant Physiol. New Ser. R. Hekefuss and P.H. Williams (Eds.), Springer-Verlag, Berlin (1976).Google Scholar
  53. 53.
    Sharma, S.K. and J. Kalra. Ginsenosides are potent and selective inhibitors of some calmodulin-dependent phosphodiesterase isozymes. Biochemistry 32:4975 (1993).PubMedCrossRefGoogle Scholar
  54. 54.
    Singh, S.B. and R. S. Thakur. Recent advances in the chemistry of steroidal saponins and their genins. J. Sei. Ind. Res. 42:319 (1983).Google Scholar
  55. 55.
    Tarikov, G., A.E. Timbekova, N.K. Abubakirov, and R.K. Koblov. Growth regulating activiy of triterpene glycosides isolated from alfalfa (Medicago sativa L.). Uzbeksk. Biol Zhur. 6:24 (1988).Google Scholar
  56. 56.
    Teasdale, J.R., C.E. Beste, and W.E. Potts. Response of weeds to tillage and crop cover residues. Weed Sci. 39:195(1991).Google Scholar
  57. 57.
    Tschesche, R. “Advances in the Chemistry of Antibiotic Substances from Higher Plants”, pp. 274–289 in Pharmacognosy and Phytochemistry, H. Wagner and L. Horhammer (Eds.) Springer-Verlag, Berlin (1971).Google Scholar
  58. 58.
    Tsurumi, S. and Y. Tsujino. Chromosaponin I stimulates the growth of lettuce roots. Physiol Plant. 93:785 (1995).CrossRefGoogle Scholar
  59. 59.
    Tsunimi, S., T. Takagi, and T. Hashimoto. A γ-pyronyl—triterpenoid saponin from Pisum sativum. Phytochemistry 31:2435 (1992).CrossRefGoogle Scholar
  60. 60.
    Varshney, LP. and M.O. Farooq. Etude l’influence d’une nouvelle saponine d’AIbizzia lebbek, Benth. sur la germination et la croissance des graines de pois chicke (Cicer arietinum L.) et d’orge (Hordeum vulgare L.) Bull Soc. Chem. Biol. 35:827 (1953).Google Scholar
  61. 61.
    Wagner, S.C., R.M. Zabktfowicz, M.A. Locke, R.J. Smeda, and CT. Bryson. Influence of herbicide—desiccated cover crops on biological soil quality in the Mississippi Delta. Proc. 1995 Southern Conservation Tillage Conference for Sustainable Agriculture. MAFES Special Bulletin 88–7. Missississippi State University (1995).Google Scholar
  62. 62.
    Waiyaki, B.G. and E. Schlosser. Role of saponins in antifungal resistance. 9. Species—specific inactivation of avenecin by Fusarium avenaceum. PhytopaihoL Z. 92:346 (1978).CrossRefGoogle Scholar
  63. 63.
    Waller, G.R., M. Jurzysta, and R.L. Z. Thome. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull. Acad. Sin. 34:1 (1993).Google Scholar
  64. 64.
    Waller, G.R., M. Jurzysta, and R.L. Z. Thome. Root saponins from alfalfa (Medicago sativa L.) and their allelopathic activity on weeds and wheat. Allelopathy J. 2:21 (1995).Google Scholar
  65. 65.
    Wyman-Simpson, C.L., G.R. Waller, M. Jurzysta, J.K. McPherson, and C.C. Young. Biological activity and chemical isolation of root saponins of six cultivars of alfalfa (Medicago sativa L.). Plant Soil 135:83 (1991).CrossRefGoogle Scholar
  66. 66.
    Zablotowicz, R.M., R.E. Hoagland, and S.C. Wagner. “Effect of Saponins on the Growth and Activity of Rhizosphere Bacteria”, this volume (1996).Google Scholar
  67. 67.
    Zambou, K., C.G. Spyropoulos, I. Chinou, and F. Kontos. Saponin-like substances inhibit α-galactosidase production in the endosperm of Fenugreek seeds. Planta 189:207 (1993).CrossRefGoogle Scholar
  68. 68.
    Zimmer, D.E., M.W. Pedersen, and C.F. McGuire. A bioassay for alfalfa saponins using the fungus, Trichoderma viride Pers. ex Fr. Crop Sci. 7:223 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Robert E. Hoagland
    • 1
  • Robert M. Zablotowicz
    • 1
  • Krishna N. Reddy
    • 1
  1. 1.Southern Weed Science LaboratoryUSDA-ARSStonevilleUSA

Personalised recommendations