Advertisement

A Systematic NMR Approach for the Determination of the Molecular Structure of Steroidal Saponins

  • Pawan K. Agrawal
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 405)

Abstract

Steroidal saponins and their aglycones (steroidal sapogenins), which are widely distributed in various plant families, are attracting the attention of research workers not only as economically important raw material convertible into various steroid hormonal drugs, but recently also as biologically active materials having independent value.1–6 All steroidal sapogenins possess a parent cholestane carbon skeleton (C27), having perhydrocyclopentenophenanthrene nucleus (rings A, B, C, and D), the side chain of which undergoes cyclization resulting in either a hexacyclic system (four carbocyclic and two heterocyclic rings) or a pentacyclic system (four carbocyclic and one heterocyclic ring). Most of these contain, in addition, one 5-membered ring (E) and one 6- or 5-membered ring (F), both of which are heterocyclic and fixed in a spiran fashion at C-22. Those cholestane derivatives which are formed by the ring opening of both heterocyclic rings are also included in this class because these have been regarded as intermediate in the biosynthesis of steroidal sapogenins.7–9

Keywords

Steroidal Saponin Monosaccharide Residue Olefinic Bond Anomeric Configuration Chemical Shift Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hardman, Recent developments in our knowledge of steroids, Planta Med., 53:233 (1987).PubMedGoogle Scholar
  2. 2.
    S.B. Mahato, A.N. Ganguli and N.P. Sahu, Steroidal saponins, Phytochemistry, 21:639 (1987).Google Scholar
  3. 3.
    G. Voigt and K. Hiller, Neuere Ergebnisse zur Chemie und Biologie der Steroid Saponine, Sci. Pharm. 55:201 (1987).Google Scholar
  4. 4.
    A. Martson and K. Hostettmann, Plant molluscicides, Phytochemistry, 24:639 (1985).Google Scholar
  5. 5.
    R. Tschesche and G. Wulff, Chemie und Biologie der Saponins, in Fortschritte der Chemie Organische Naturstoffe, W. Herz, H. Grisebach and G.W. Kirby, Eds, Springer Verlag, Berlin, 30:461 (1973).Google Scholar
  6. 6.
    S.D. Kravets, Yu.S. Vollerner, M.B. Gorovits and N.K. Abubikarov, Steroids of spirostan and furostan series from plants of the genus Allium, Khim. Prir. Soed., 429 (1990).Google Scholar
  7. 7.
    E. Heftmann, Biogenesis of steroids in Solanaceae, Phytochemistry, 22:1843 (1983).Google Scholar
  8. 8.
    S. Seo, A. Uomori, Y. Yoshimura and K. Tori, Biosynthesis of (25S)- and (25/9)-furostanol glycosides from [1,2–13C2] acetate in Dioscorea tokoro tissue culture, J. Chem. Soc., Perkin Trans I, 869 (1984).Google Scholar
  9. 9.
    A. Uomori, S. Seo, T. Sato, Y. Yoshimura and K. Takeda, Synthesis of (25H)-[26–2H1] cholesterol and 1H NMR and HPLC resolution of (25Rj- and (25S)-26-hydroxycholesterol, J. Chem. Soc., Perkin Trans I,1713 (1987).Google Scholar
  10. 10.
    A.V. Patel, G. Blunden, T. Crabb, Y. Sauvaire and Y. Baccou, A. review of naturally occurring steroidal sapogenins, Fitoterapia, 58:56 (1987).Google Scholar
  11. 11.
    J. W. Blunt and J. B. Stothers, 13C NMR of steroids, Org. Magn. Reson., 9:439 (1977).Google Scholar
  12. 12.
    D.H. William and I. Flemming, Spectroscopic Methods in Organic Chemistry, 4th edn., McGraw Hill, London (1987).Google Scholar
  13. 13.
    P.K. Agrawal, S.K. Srivastava and W. Gaffield, Carbon-13 NMR spectroscopy of steroidal alkaloids, in Alkaloids: Chemical and Biological Perspectives, S.W. Pelletier Ed., Springer Verlag, New York, Vol 7, pp. 49 (1991).Google Scholar
  14. 14.
    P.K. Agrawal, D.C. Jain, R.K. Gupta and R.S. Thakur, Carbon-13 NMR steroidal sapogenins and steroidal saponins, Phytochemistry, 24:2479 (1985).Google Scholar
  15. 15.
    P.K. Agrawal, D.C. Jain and A.K. Pathak, NMR spectroscopy of steroidal sapogenins and steroidal saponins: an update, Magn. Reson. Chem., in press.Google Scholar
  16. 16.
    S.L. Patt and J.N. Shoolery, Attached proton test for carbon-13 NMR. J. Magn. Reson., 46:435 (1982).Google Scholar
  17. 17.
    D.M. Doddrell, D.T. Pegg and M.R. Bendall, Distortionless enhancement of NMR signals by polarization transfer, J. Magn. Reson., 48:323(1982).Google Scholar
  18. 18.
    G.A. Morris, Sensitivity enhancement in 15N NMR: polarization transfer using the INEPT pulse sequence, J. Am. Chem. Soc., 102:428 (1980).Google Scholar
  19. 19.
    A. Bax, R. Freeman and S.P. Kempsell, Natural abundance 13C–13C coupling observed via double—quantum coherence, J. Am. Chem. Soc., 102:4849 (1980).Google Scholar
  20. 20.
    This experiment was first proposed by Jeener (J. Jeener, Ampere International Summer School II, Basko Polje), Yugoslavia, (1971).Google Scholar
  21. 21.
    W.P. Aue, J. Karhan and R.R. Ernst, Homonuclear broad band decoupling and two—dimensional J—resolved NMR spectroscopy, J. Chem. Phys., 64:4226 (1976).Google Scholar
  22. 22.
    A Bax and R. Freeman, Investigation of complex networks of spin—spin coupling by two—dimensional NMR. J. Magn. Reson., 44:542 (1981).Google Scholar
  23. 23.
    M. Rance, O.W. Sorensen, G. Bodenhausen, G. Wagner, R.R. Ernst and K. Wuthrich, Improved spectral resolution COSY 1H NMR spectra of proteins via double—quantum filtering. Biochem. Biophys. Res. Commun., 17:479 (1983).Google Scholar
  24. 24.
    C. Griesinger, O.W. Sorensen and R.R. Ernst, Two—dimensional correlation of connected NMR transitions. J. Am. Chem. Soc., 107:6394(1985).Google Scholar
  25. 25.
    T. Domke, P. Xu and R. Freeman, Geminal filtered correlation spectroscopy, J. Magn. Reson., 92:218 (1991).Google Scholar
  26. 26.
    U. Piantini, O.W. Sorensen and R.R. Ernst, Simplification of 1H NMR spectra by selective excitation of experimental subspectra, J. Am. Chem. Soc., 104:6800 (1982).Google Scholar
  27. 27.
    G. Wagner, Two-dimensional relayed coherence transfer spectroscopy, J. Magn. Reson., 55:151 (1983).Google Scholar
  28. 28.
    S.W. Homans, R.A. Dwek, D.L. Femandes and T.W. Rademacher, Multi—step relayed correlation spectroscopy: sequential resonance assignments in oligosaccharides, Proc. Natl. Acad. Sci. U.S.A., 81:6286 (1984).PubMedGoogle Scholar
  29. 29.
    D.G. Davis and A. Bax, Assignment of complex 1H NMR spectra via two—dimensional homonuclear Hartmann—Hahn spectroscopy, J. Am. Chem. Soc., 107:2820 (1985).Google Scholar
  30. 30.
    A. Kumar, R.R. Ernst and K. Wuthrich, A two—dimensional nuclear Overhauser enhancement (2D NOE) experiment for the evolution of complete proton—proton cross relaxation networks in biological molecules, Biochem. Biophys. Res. Commun., 95:1 (1980).PubMedGoogle Scholar
  31. 31.
    A.A. Bothner-By, R.L. Stephens, J.T. Lee, C.D. Warren and R.W. Jeanloz, Structure determination of a tetrasaccharide by transient nuclear Overhauser effects in the rotating frame, J. Am. Chem. Soc., 106:811 (1984).Google Scholar
  32. 32.
    G. Bodenhausen and R. Freeman, Correlation of protonated carbon-13 NMR spectra by heteronuclear two—dimensional spectroscopy, J. Magn. Reson., 28:471 (1977).Google Scholar
  33. 33.
    A. Bax, W. Egan and P. Kovac, New NMR techniques for structure determination and resonance assignments of complex carbohydrates, J. Carbohydr. Chem., 3:593 (1984).Google Scholar
  34. 34.
    A. Bax and S. Subramanian, Sensitivity—enhanced two—dimensional heteronuclear shift correlation NMR spectroscopy, J. Magn. Reson., 67:565 (1986).Google Scholar
  35. 35.
    G.E. Martin and A.S. Zektzer, Long—range two—dimensional heteronuclear shift correlation, Magn. Reson. Chem., 26:631 (1988).Google Scholar
  36. 36.
    A. Bax and M.F. Summers, 1H and 13C assignments from sensitivity enhanced detection of heteronuclear multiple—bond connectivity by 2D multiple—quantum NMR, J. Am. Chem. Soc., 108:2093 (1986).Google Scholar
  37. 37.
    W.R. Croasmum and R.M.K. Carlson, Steroid structural analysis by two—dimensional NMR, In Two—Dimensional NMR spectroscopy, Application for Chemists and Biochemists, Verlag Chemie, New York, pp 387 (1987).Google Scholar
  38. 38.
    G.A. Morris, Modern NMR techniques for structure elucidation, Magn. Reson. Chem., 24:371 (1986).Google Scholar
  39. 39.
    A.E. Derome, Modern NMR Techniques for Chemical Research, Pergamon Press, New York (1987).Google Scholar
  40. 40.
    J.K.M. Sanders and B.K. Hunter, Modern NMR Spectroscopy: A Guide for Chemists, Oxford University Press, Oxford (1987).Google Scholar
  41. 41.
    J. Keeler, Two—dimensional nuclear magnetic resonance spectroscopy, Chem. Soc. Rev., 19:381 (1990).Google Scholar
  42. 42.
    P.K. Agrawal, Two—dimensional NMR spectroscopy in the structure determination of natural products. J. Sci. Indust. Res., 53:329 (1994).Google Scholar
  43. 43.
    A.E. Derome, The use of NMR spectroscopy in the structure determination of natural products: two—dimensional methods, Nat. Prod. Rep., 6:111 (1989).PubMedGoogle Scholar
  44. 44.
    J.N. Shoolery, Recent developments in 13C and proton NMR, J. Nat. Prod., 47:226 (1984).Google Scholar
  45. 45.
    I.H. Sadler, The use of NMR spectroscopy in the structure determination of natural products: one—dimensional methods, Nat. Prod. Rep., 5:101 (1988).PubMedGoogle Scholar
  46. 46.
    W.S. Brey, Ed., Pulse Methods in 1D and 2D Liquid-phase NMR, Academic Press, San Diego (1988).Google Scholar
  47. 47.
    R.R. Ernst, G. Bodenhausen and A. Wokun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, Oxford (1987).Google Scholar
  48. 48.
    P.K. Agrawal, C.A. Bush, N. Qureshi and K. Takayama, Structural analysis of lipid A and re—lipopolysaccharides by NMR spectroscopic methods, Adv. Biophys. Chem., 4:179 (1994).Google Scholar
  49. 49.
    S. Kubo, Y. Mimaki, Y. Sashida, T. Nikiado and T. Ohmoto, Steroidal saponins from the rhizomes of Smilax sieboldii, Phytochemistry, 31:2445 (1992).PubMedGoogle Scholar
  50. 50.
    T. Morita, T. Ushiroguchi, N. Hayashi, H. Matsuura, Y. Itakura and T. Fuwa, Steroidal saponins from elephant garlic, bulbs of Allium ampeloprasum L., Chem. Pharm. Bull., 36:675 (1993).Google Scholar
  51. 51.
    Y. Mimaki, Y. Sashida, O. Nakamura, T. Nikiado and T. Ohmoto, Steroidal saponin from the bulbs of Lilium regal and L henryi. Phytochemistry, 33:675 (1993).PubMedGoogle Scholar
  52. 52.
    X.C. Li, C.R. Yang, M. Ichikawa, H. Matsuura, R. Kasai and K. Yamasaki, Steroidal saponins from Polygonatum kingianum, Phytochemistry, 31:3559 (1992).PubMedGoogle Scholar
  53. 53.
    Yu. S. Vollerner, S.D. Kravets, A.S. Sashkov, B. Tashkhodzhaev, M.B. Gorovits, M.R. Yagudaev and N.K. Abubikarov, Alliosterol and alliosides A and B from Allium suvorovii and Allium stipitatum — Structural analog of furostanols. Khim. Prir. Soed., 231 (1991).Google Scholar
  54. 54.
    M.H. Yang, G. Blunden, A. Patel, T.A. Crabb, K. Brain and W.J. Griffin, Two furostane saponins from Cordyline rubra. Phytochemistry, 29:1332 (1990).Google Scholar
  55. 55.
    H. Shimomura, Y. Sashida and Y. Mimaki, 26-O-acylated furostanol saponins pardarinoside A and B from bulbs of Lilium pardarinum, Chem. Pharm. Bull., 36:3226 (1988).Google Scholar
  56. 56.
    J. Kim, J.M. Pezzuto, D.D. Soejarto, F.A. Lang and A.D. Kinghorn, Polypodoside A, an intensely sweet constituent of the rhizomes of Polypodium glycyrrhiza, J. Nat. Prod., 51:1166 (1988).PubMedGoogle Scholar
  57. 57.
    M. Nishizawa, H. Yamada, Y. Yamaguchi and S. Hatakeyama, Structure revision of polypodoside A: major sweet principle of Polypodium glycyrrhiza, Chem. Lett., 1555 (1994).Google Scholar
  58. 58.
    H. Shimomura, Y. Sashida, Y. Mimaki and Y. Iitaka, Studies on the constituents of Lilium henryi B, Chem. Pharm. Bull., 36:2430 (1988).Google Scholar
  59. 59.
    S. Okamura, K. Shingu, S. Yahara, H. Kohda and T. Nohara, Two steroidal glycosides from Scopolia japonica, Chem. Pharm. Bull., 40:2981 (1992).Google Scholar
  60. 60.
    Y. Ju and Z. Jia, Steroidal saponins from the rhizomes of Smilax menispermoidea, Phytochemistry, 31:1349 (1992).PubMedGoogle Scholar
  61. 61.
    W. Willker and D. Liebfritz, Complete assignment and conformational analysis of tomatine and tomatidine. Magn. Reson. Chem., 30:645 (1992).Google Scholar
  62. 62.
    A.K. Pathak, P.K. Agrawal, D.C. Jain, R.P. Sharma and O.W. Howarh, NMR studies of 20β-hydroxyecdysone, a steroid isolated from Tinospora cordifoüa. Indian J. Chem., 34B:674 (1995).Google Scholar
  63. 63.
    R. Puri, T.C. Wong and R.K. Puri, Solasodine and diosgenin: 1H and 13C assignments by two—dimensional NMR spectroscopy, Magn. Reson. Chem., 31:278 (1993).Google Scholar
  64. 64.
    N. Platzer, N. Goasdoue and D. Dovoust, Long—range 1H coupling interactions: Identification of different pathways by 2D NMR δ- δ correlated spectroscopy. Application in structural analysis, Magn. Reson. Chem., 25:311 (1987).Google Scholar
  65. 65.
    H. Schroder and E. Haslinger, Long—range proton spin—spin coupling in rigid cyclic structures by 2D NMR through space coupling. Magn. Reson. Chem., 32:12 (1994).Google Scholar
  66. 66.
    D.N. Krik and H.C. Toms, ω1-decoupled 1H homonuclear shift correlated nuclear magnetic resonance spectroscopy (COSYDEC) applied to steroids. Steroids, 56:195 (1991).Google Scholar
  67. 67.
    H.C. Toms, C. Douglas, K.A. White, K.E. Smith, S. Latif and R.W.P. Hubbard, A survey of the high—field 1H NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds, J. Chem. Soc., Perkin Trans. II, 1567 (1990).Google Scholar
  68. 68.
    P.K. Agrawal, G.A. Morris and D. Bunsawansong, Unambiguous 1H and 13C NMR assignments for a stereoisomeric pair of steroidal sapogenins: smilagenin and sarsasapogenin, Manuscript in preparation.Google Scholar
  69. 69.
    J. Peng, X. Yao, H. Kobayashi and C. Ma, Macrostemonosides, novel furostanol glycosides from Allium macrostemon, Planta Med., 61:58 (1995).PubMedGoogle Scholar
  70. 70.
    J.T. Branke and E. Haslinger, Spirostanol glycoside from the tuber Ophiopogon japonicus, Lieblgs Ann. Chem., 587 (1995).Google Scholar
  71. 71.
    Y. Takashi, Y. Mimaki, A. Kameyama, Y. Sashida, T. Nikaido and T. Ohmoto, Recurvosides A-E, new polyhydroxylated steroidal saponins from Nolina recurvata stems, Tetrahedron, 51:2281 91995).Google Scholar
  72. 72.
    T. Horikawa, Y. Mimaki, Y. Sashida, T. Nikaido and T. Ohmoto, Aculeoside A, a novel steroidal saponin containing a deoxyaldoketose from Ruscus aculeatus, Chem. Lett., 2303 (1994).Google Scholar
  73. 73.
    T. Inoue, Y. Mimaki, Y. Sashida, T. Nikaido and T. Ohmoto, Steroidal saponins from the tubers of Dechelostemma multiflorum and their inhibitory activity on cyclic -AMP phosphodiesterase. Phytochemistry, 39:1103 (1995).PubMedGoogle Scholar
  74. 74.
    T. Faecke and S. Berger, Complete proton assignment in acetylcholesterol using ge—SELINCOR—TOCSY, Tetrahedron, 51:3521 (1995).Google Scholar
  75. 75.
    T. Faecke and S. Berger, SERF, a new method for H, H spin coupling measurement in organic chemistry, J. Mag. Reson., Ser. A. 113:114(1995).Google Scholar
  76. 76.
    G. Pant, M.S. Panwar, D.S. Negi, M.S.M. Rawat, G.A. Morris and R.I.G. Thompsen, Structure elucidation of a spirostanol glycoside from Aspergus officinalis fruits by concerted use of two-dimensional NMR techniques, Magn. Reson. Chem., 26:911 (1988).Google Scholar
  77. 77.
    T. Yamashita, T. Matsumoto, S. Yahara, N. Yoshida and T. Nohara, Structures of two new steroidal glycosides, soladulcosides A and B from Solanum dulcamara, Chem. Pharm. Bull., 39:1626 (1991).PubMedGoogle Scholar
  78. 78.
    Y. Mimaki, N. Ishibashi, K. Ori and Y. Sashida, Steroidal glycosides from the bulbs of Lilium dauricum, Phytochemistry, 31:1753 (1992).PubMedGoogle Scholar
  79. 79.
    P.K. Agrawal and D.C. Jain, 13C NMR spectroscopy of oleanane triterpenoids, Progr. NMR Spectrosc., 24:1 (1992).Google Scholar
  80. 80.
    V. Dirsch, M. Lacaille-Dubois and H. Wagner, Dracoside, a new steroidal saponin from Helleboru purpurascens, Nat. Prod. Lett., 4:29(1994).Google Scholar
  81. 81.
    G. Blunden, A.V. Patel and T.A. Crabb, Microbiological transformations of hecogenin and diosgenin by Cunninghamella elegans, Phytochemistry, 29:1771 (1990).Google Scholar
  82. 82.
    J.A.R. Garcia and H.T.V. Castro, 13C NMR spectroscopy of (25R)-5α-spirostanes, Magn. Reson. Chem., 25:831 (1987).Google Scholar
  83. 83.
    O. Nakamura, Y. Mimaki, Y. Sashida, T. Nikaido and T. Ohmoto, Agapanthussaponins A-D, new potent cAMP phosphodiesterase inhibitors from the underground parts of Agapenthus inapertus, Chem. Pharm. Bull., 41:1784 (1993).PubMedGoogle Scholar
  84. 84.
    K. Nakano, K. Murakami, Y. Takaishi, T. Tomimatsu and T. Nohara, Studies on the constituents of Haloniopsis orientalis (Thunb) c. Tanaka, Chem. Pharm. Bull., 37:116 (1989).Google Scholar
  85. 85.
    Y. Renzhou, W. Dezu and F. Jian, Carbon-13 NMR spectra of ten steroidal sapogenins. Acta. Bot. Yunnan., 9:374 (1987).Google Scholar
  86. 86.
    T. Konishi, S. Kiyosawa and J. Shoji, Studies on the coloration mechanism of furostanol derivatives with Ehrlich reagent. I. On the reaction of 3,26-dimethoxyfurosta-5,20-diene with Ehrlich reagent. Chem. Pharm. Bull., 32:2111 (1987).Google Scholar
  87. 87.
    K. Nakano, T. Nohara, T. Tomimatsu and T. Kawasaki, 18-Norspirostanol derivatives from Trillium tschonoskii, Phytochemistry, 22:1047 (1983).Google Scholar
  88. 88.
    Y. Sashida, K. Kawashima and Y. Mimaki, Novel polyhydroxylated steroidal saponins from Allium giganteum, Chem. Pharm. Bull.,39:698 (1991).Google Scholar
  89. 89.
    J. Buddrus and H. Bauer, Direct identification of the carbon skeleton of organic compounds using double quantum coherence 13C NMR spectroscopy. The INADEQUATE pulse sequence, Angew. Chem. Int. Ed. Engl., 26:625 (1987).Google Scholar
  90. 90.
    K. Kudo, K. Miyahara, N. Marubayashi and T. Kawasaki, Characterization of a minor compound which accompanies the usual 22α(R)-0,25β(S)-spirostanol glycoside, as a novel type of 22β(S)-0–25a(S)analog. Chem. Pharm. Bull., 32:4229 (1984).Google Scholar
  91. 91.
    J.M.B. Filho, D.F. Medeiros, M.D.F. Agra and J. Bhattacharya, Spirostanes of Kallistromea tribulodes: Identification of C-25 epimers in mixtures by 13C NMR spectroscopy, Phytochemisrty, 28:1985 (1989).Google Scholar
  92. 92.
    M. Ono, K. Shoyama and T. Nohara, The constituents of Chinese Polygonati officinalis rhizome and Poligonati rhizoma, Shoyakugaku Zasshi, 42:135 (1988).Google Scholar
  93. 93.
    A.M.E. Abdel-Aziz, K. R. Brain, G. Blunden, T. Crabb and A.K. Bashir, Steroidal saponins from Tacca leontopetaloides, Planta Med., 56:218(1990).PubMedGoogle Scholar
  94. 94.
    A. Abdel-Aziz, K. Brain, G. Blunden, T. Crabb and A.K. Bashir, Isomeric F-ring dihydroxylated 22,25-epoxyfurostane an spirostane sapogenins from Tacca leontopetaloides, Phytochemistry, 29:1643 (1990).Google Scholar
  95. 95.
    K. Bock, C. Pedersen and H. Pedersen, Carbon-13 NMR data for oligosaccharides, Adv. Carbohydr. Chem. Biochem., 42:193 (1984).Google Scholar
  96. 96.
    P.K. Agrawal, NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides, Phytochemistry, 31:3307 (1992).PubMedGoogle Scholar
  97. 97.
    J. Dabrowski, Two—dimensional proton magnetic resonances spectroscopy, Meth. Enzymol., 179:122 (1989).PubMedGoogle Scholar
  98. 98.
    C.A. Bush, High resolution NMR in the determination of the structure of complex carbohydrates. Bull. Magn. Reson., 10:73 (1989).Google Scholar
  99. 99.
    S.W. Homans, Oligosaccharide conformations: application of NMR and energy calculations. Progr. NMR Spectrosc.,22:55(1990).Google Scholar
  100. 100.
    P.K. Agrawal and C.A. Bush, 1H and 13C NMR assignments of 2,3-diacetylamido-2,3-dideoxy-D-glucopyranose. J. Carbohydr. Chem., 11:945 (1992).Google Scholar
  101. 101.
    H. Schroeder, M. Schubert-Zsilaveez, G. Reznicek, J. Cart, J. Jurenitisch and E. Haslinger, A triterpene saponin from Hemiaria glabra, Phytochemistry, 34:1609 (1993).Google Scholar
  102. 102.
    R. Bazzo, C.J. Edge, R.A. Dwek and T.W. Rademacher, Extracting subspectra from overlapping regions DOUBLE TOCSY, J. Mag. Reson., 86:199 (1990).Google Scholar
  103. 103.
    F. Inagaki, I. Shimada, D. Kohda, A. Suzuki and A. Bax, Relayed HOHAHA, a useful method for extracting subspectra of individual components of sgar chains. J. Magn. Reson., 81:186 (1989).Google Scholar
  104. 104.
    P.K. Agrawal and M.C. Bansal, in Studies in Organic Chemistry, Vol 39 Carbon-13 NMR of Flavonoids, P.K. Agrawal Ed Elsevier, New York, pp. 283(1989).Google Scholar
  105. 105.
    N.K. Kochetkov, Microbial polysaccharides: new approaches, Chem. Soc. Rev., 19:29 (1990).Google Scholar
  106. 106.
    S. Chen and J.K. Snyder, Diosgenin-bearing molluscidal saponins from Allium vineale: an NMR approach for the structural assignment of oligosaccharide units. J. Org. Chem., 54:3679 (1988).Google Scholar
  107. 107.
    V.U. Ahmad, E.T. Baqai, I. Fatima and R. Ahmad, A spirostanol glycoside from Cestrum nocturnum, Phytochemistry, 30:3057 (1991).PubMedGoogle Scholar
  108. 108.
    Y. Mimaki, O. Nakamura, Y. Sashida, T. Nikaido and T. Ohmoto, Steroidal saponins from the bulbs of Triteleva lacta and their inhibitory activity on cyclic AMP phosphodiesterase. Phytochemistry, 30:1279 (1995).Google Scholar
  109. 109.
    P.K. Agrawal and A.K. Pathak, NMR spectroscopic approaches for the determination of interglycosidic linkage and sequence in oligosaccharides, Phytochem. Anal., accepted.Google Scholar
  110. 110.
    G. Pant, M.C. Purohit, G.A. Morris, A.G.W. Halstead and R.I.G. Thompson, Structure elucidation and proton and carbon-13 assignments of a pentasaccharide glycoside from Agave americana, Magn. Reson. Chem., 32:213 (1994).Google Scholar
  111. 111.
    G.M. Clore and A.M. Gronenborn, Applications of three— and four—dimensional heteronuclear NMR spectroscopy to protein structure determination, Progr. NMR Spectrosc., 23:108 (1991).Google Scholar
  112. 112.
    G.W. Vuister, P.D. Waard, R. Boelens, J.F.G. Vliegenthart and R. Kaptein, The use of 3D NMR in structural studies of oligosaccharides, J. Am. Chem. Soc., 111:772 (1989).Google Scholar
  113. 113.
    P.D. Waard, R. Boelens, G.W. Vuister and J.F.G. Vliegenthart, Structural studies by 1H/13C two—dimensional and three—dimensional HMQC-NOE at natural abundance on complex carbohydrates, J. Am. Chem. Soc., 112:3232 (1990).Google Scholar
  114. 114.
    D. Uhrin, J.R. Brisson and D.R. Buundle, Pseudo-3D NMR spectroscopy: application to oligo— and polysaccharides, J. Biomol. NMR, 3:367 (1993).Google Scholar
  115. 115.
    H. Kessler, S. Mronga and G. Gemmecker, Mutidimensional NMR experiments using selective pulses. Magn. Reson. Chem., 29:527 (1991).Google Scholar
  116. 116.
    H. Schroeder and E. Haslinger, Sequential analysis of oligosaccharide structures in a few minutes, Angew. Chem. Int. Ed. Engl., 32:1349(1993).Google Scholar
  117. 117.
    T.A. Carpenter, L.D. Colebrook, L.D. Hall and G.K. Pierens, Application of gradient—selective COSY and double—quantum filtered gradient—selective COSY experiments to carbohydrates: 2-deoxy-D-arabino-hexose (2-deoxy-D-glucose). Carbohydr. Res., 241:267(1993).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Pawan K. Agrawal
    • 1
  1. 1.Central Institute of Medicinal and Aromatic PlantsLucknowIndia

Personalised recommendations