Novel Microbial Transformations of Steroids

  • K. M. Madyastha
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 405)


In recent years, reactions catalyzed by microbes or their enzymes have been extensively evaluated from the viewpoint of synthetic organic chemistry. These biocatalysts offer greater specificity than conventional organic reactions and hence used as reagents to carry out certain specific chemical reactions. Microbes find use in the synthesis and production of pharmacologically active steroids. Microbial transformation of steroids was recognised after the successful llα-hydroxylation of progesterone by the fungus, Rhizopus arrhizus.1 Microorganisms can be efficiently used to carry out hydroxylation of a steroid molecule at specific positions. A significant amount of work has already been carried out on the microbial steroid transformations.2–4. We isolated two versatile microorganisms identified as Mucor piriformis and Moraxella sp. that carry out novel and preparatively useful transformations of some steroids. The unique properties of these two microorganisms as biocatalyst are presented.


Mineral Salt Medium Microbial Transformation Microbial Conversion Rhizopus Arrhizus Cladosporium Herbarum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.H.Peterson and H.C.Murry, Microbiological oxygenation of steroids at carbon-II, J. Am. Chem. Soc.74: 1871 (1952).CrossRefGoogle Scholar
  2. 2.
    W.Charney and H.L.Herzog, Microbial transformations of steroids: a hand book, Academic Press, New York (1967).Google Scholar
  3. 3.
    S.B.Mahato and S.Banerjee, Steroid transformations by microorganisms-II, Phytochemistry 24: 1403 (1985).CrossRefGoogle Scholar
  4. 4.
    S.B.Mahato, S.Banerjee and S.Podder, Steroid transformations by microorganisms-III, Phytochemistry 28: 7 (1989).CrossRefGoogle Scholar
  5. 5.
    C.J.Sih, K.C.Wang and H.H.Tai, C22 Acid intermediates in the microbiological cleavage of cholesterol side chain, J. Am. Chem. Soc. 89: 1956 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    C.J.Sih, K.C.Wang and H.H.Tai, Mechanism of steroid oxidation by microorganisms, XIII C22 acid intermediates in the degradation of the cholesterol side chain, Biochemistry 7: 796 (1968).PubMedCrossRefGoogle Scholar
  7. 7.
    C.K.A.Martin, Microbiological cleavage of sterol side chain, Adv. AppL Microbiol. 22: 29 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    K.Arima, T.Nakamatsu and T.Beppu, Microbial production of 3-oxobisnorchola-l,4-dien-22-oic acid, Agric. Biol. Chem. 42: 411 (1978).CrossRefGoogle Scholar
  9. 9.
    Y.Fujimoto, C.S.Chen, Z.Szeleczky, D.Ditullio and C.J.Sih, Microbial degradation of the phytosterol side chain.I. Enzymatic conversion of 3-oxo-24-ethylcholest-4-en-26-oic acid into 3-oxo-cholest-4-en-24-oic acid and androst-4-en-3,17-dione, J. Am. Chem. Soc. 104: 4718 (1982).CrossRefGoogle Scholar
  10. 10.
    R.W.Owen, A.N.Mason and R.F.Bilton, The degradation of cholesterol by Pseudomonas sp. NC IB 10590 under aerobic conditions, J. Lipid Res. 24: 1500 (1983).PubMedGoogle Scholar
  11. 11.
    P.K.Bhattacharyya, M.K.Rao, N.R.Devi, M.Ramgopal, P.Madyastha and K.M.Madyastha, Microbial oxidation of sterol side chain, J. Indian Chem. Soc. 61: 1 (1984).Google Scholar
  12. 12.
    R.W.Owen, A.N.Mason and R.F.Bilton, The degradation of ß-sitosterol by Pseudomonas sp. NC IB 10590 under aerobic conditions, J. Steroid Biochem. 23: 327 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    V.N.Shankar, T.N.Guru Rao and K.M. Madyastha, Evidence for a new pathway in the microbial conversion of 3ß-acetoxyeholest-5-en-19-ol into estrone, J. Chem. Soc, Perkin Trans.I: 2233 (1993).CrossRefGoogle Scholar
  14. 14.
    W.Seubert, Degradation of isoprenoid compounds by microorganisms, J. Bacteriol. 79:426 (1960).PubMedGoogle Scholar
  15. 15.
    K.M.Madyastha and V.N.Shankar, Role of neutral metabolites in microbial conversion of 3ß-acetoxy 19-hydroxy cholest-5-ene into estrone, Appl. Environ. Microbiol. 60: 1512 (1994).PubMedGoogle Scholar
  16. 16.
    S.Burstein and M.Gut, Intermediates in the conversion of cholesterol to pregnenolone: Kinetics and mechanism, Steroids 28: 115 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    E.A.Thompson Jr. and P.K.Siiteri, The involvement of human placental microsomal cytochrome P-450 in aromatization, J. Biol. Chem. 249: 5373 (1974).PubMedGoogle Scholar
  18. 18.
    C.Vezina and K.Singh, Transformation of organic compounds by fungal spores, in: Filamentous Fungi, Vol. I, pp 158–192, J.E.Smith and D.R.Berry, eds. Edward Arnold, London (1975).Google Scholar
  19. 19.
    H.C.Murray and D.H.Peterson, 8-Hydroxy-ll-deoxycorticosterones, U.S. Patent 2,800,490 (1957) CA 52: 1300 g (1958).Google Scholar
  20. 20.
    V.K.Eroshin, Capacity of Mucorales fungi to oxidize steroid S, Mikrobiologiya 31: 608 (1962).Google Scholar
  21. 21.
    H.L.Holland and E.Riemland, Microbial hydroxylation of steroids. Rearrangements during epoxidation and hydroxylation and the stepwise nature of these enzymic reactions, Can. J.Chem. 63: 1121 (1985).CrossRefGoogle Scholar
  22. 22.
    K.M.Madyastha and J. Srivatsan, Novel transformation of progesterone by a Mucor sp, Can. J.Microbiol. 33: 361 (1987).CrossRefGoogle Scholar
  23. 23.
    S.B.Mahato, S.Banerjee and S.Podder, Steroid transformation by microorganisms-III, Phytochemistry 28: 7 (1989).CrossRefGoogle Scholar
  24. 24.
    R.Krishnan, K.M.Madyastha and M.A.Viswamitra, The crystal structure of 14a, 17ß-dihydroxyandrost-4-en-3-onemonohydrateand 14α, 17ß-dihydroxyandrost-l,4-dien-3-one monohydrate, Steroids 56: 440 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    H.C.Murray and D.H.Paterson, US Patent 2,602,769 (1952) CA 46: 8331 f (1952).Google Scholar
  26. 26.
    R.M.Dodson and R.C.Tweitt, US Patent 2,924,611 (1960) CA 54: 11086 h (1960).Google Scholar
  27. 27.
    K.M.Madyastha and T.Joseph, Transformation of 16-dehydroprogesterone and 17a-hydroxyprogesterone by Mucor piriformis, Appl. Microbiol. Biotechnol. 41: 170 (1994).CrossRefGoogle Scholar
  28. 28.
    K.M.Madyastha and T.Joseph, Transformation of dehydroepiandrosterone and pregnenolone by Mucor piriformis, Appl. Microbiol. Biotechnol 43: 000 (1995).Google Scholar
  29. 29.
    K.M.Madyastha and G.V.B.Reddy, Mucor piriformis, an efficient N-dealkylating reagent for thebaine and its N-variants, J. Chem. Soc, Perkin. Trans. I, 911 (1994).CrossRefGoogle Scholar
  30. 30.
    B.R.Prema and P.K.Bhattacharyya, Microbiological transformations of terpenes II. Transformations of α-pinene, Appl. Microbiol. 10: 524 (1962).PubMedGoogle Scholar
  31. 31.
    K.Singh, S.N.Sehgal and C.Vezina, Transformation of steroids by Mucor griseocyanus, Can. J. Microbiol. 13: 1271 (1967).PubMedCrossRefGoogle Scholar
  32. 32.
    C.Vezina, S.N.Sehgal and K.Singh, Transformation of steroids by spores of microorganisms. I. Hydroxylation of progesterone by conidia of Apergillus ochraceus, Appl. Microbiol. 11: 50 (1963).PubMedGoogle Scholar
  33. 33.
    S.B.Mahato and S.Banerjee, Metabolism of 17α-hydroxyprogesterone by a Bacillus species, Biochem. J. 239: 473 (1986).PubMedGoogle Scholar
  34. 34.
    K.E.Smith, S.latif and D.N.Kirk, Microbial transformation of steroids. II. Transformation of progesterone, testosterone and androstenedione by P.blakesleeanus, J. Steroid Biochem. 32: 445 (1989).PubMedCrossRefGoogle Scholar
  35. 35.
    D.Perlman, Microbiological conversion of pregnenolone to progesterone, Science 115: 529 (1952).PubMedCrossRefGoogle Scholar
  36. 36.
    L.Tan and L.L.Smith, Microbial hydroxylations.III. llα-Hydroxylation of some 3α,5α-cyclopregnane derivatives, Biochem. Biophys. Acta 164: 389 (1968).PubMedGoogle Scholar
  37. 37.
    K.Namboori, L.Pereira and J.R.Merchant, Fungal transformation of pregnenolone and progesterone with the marine fungus Cladosporium herbarum, Indian J. Biochem. Biophys. 17: 149 (1980).Google Scholar
  38. 38.
    M.Sibahara, J.A.Moody and L.L.Smith, Microbial hydroxylations. V. lla-Hydroxylation of progesterone by cell—free preparation of Aspergillus ochraceus, Biochim. Biophys. Acta 202: 172 (1970).Google Scholar
  39. 39.
    K.Breskvar and T.Hudnik-Plevnik, Inducibility of cytochrome P-450 and NADPH—cytochrome C reductase in progesterone—treated filamentous fungi R. nigricans, J. Steroid Biochem. 14: 395 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    C.R.Jayanthi, P.Madyastha and K.M.Madyastha, Microsomal llα-hydroxylation of progesterone in A. ochraceus: part I. Characterization of the hydroxylase system, Biochem. Biophys. Res. Commun. 106: 1262 (1982).CrossRefGoogle Scholar
  41. 41.
    K.M.Madyastha, C.R.Jayanthi, P.Madyastha and D.Sumathi, Studies on the microsomal llα-hydroxylation of progesterone in A.ochraceus. Characterization and solubilisation of the hydroxylase system, Can. J. Biochem. Cell. Biol. 62: 100 (1984).CrossRefGoogle Scholar
  42. 42.
    K.E.Smith, S.A.Latif and D.N.Kirk, Microbial transformation of steroids.VII. Hydroxylation of progesterone by extracts of Phycomyces blakesleeanus, J. Steroid Biochem. Molec. Biol. 38: 249 (1991).PubMedCrossRefGoogle Scholar
  43. 43.
    K.M.Madyastha and T.Joseph, Studies on the 14α-hydroxylation of progesterone in Mucor piriformis, J. Steroid Biochem. Molec. Biol. 45: 563 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • K. M. Madyastha
    • 1
  1. 1.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations