Skip to main content

Computation by Symmetry Operations in a Structured Neural Model of the Brain: Music and Abstract Reasoning

  • Chapter

Abstract

Predictions [1,2] from our structured neural model [3-7] of the cortex led us to the hypothesis that music could causally enhance spatial-temporal reasoning. We have shown [8,9]: a) College students scored significantly higher on a spatial-temporal reasoning task after listening to a Mozart Sonata, but not after listening to silence or to minimalist music. b) Preschool children who received private keyboard lessons for 6 months improved dramatically on a spatial-temporal reasoning task while appropriate control groups did not improve significantly [10]. Enhancement a) lasted roughly 10 minutes and established the causal effect, while enhancement b) lasts long enough to have major educational implications. Here we review the model, in particular, the “built-in” ability of the cortex to recognize symmetry relations [7] among the inherent spatial-temporal firing patterns, which we suggest is a crucial feature of the cortical relationship between music and spatial-temporal reasoning. Then, we summarize the striking behavioral results [8-10], and make further predictions relevant to education.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Leng, and G.L. Shaw, Toward a neural theory of higher brain function using music as a window, Concepts Neurosci. 2:229 (1991).

    Google Scholar 

  2. X. Leng, Investigation of higher brain functions in music composition using models of the cortex based on physical system analogies. Ph.D. Thesis, University of California, Irvine (1990)

    Google Scholar 

  3. G.L. Shaw, D.J. Silverman, and J.C. Pearson, Model of cortical organization embodying a basis for a theory of information processing and memory recall, Proc. Natl. Acad. Science, USA, 82:2364 (1985).

    Google Scholar 

  4. D.J. Silverman, G.L. Shaw, and J.C. Pearson, Associative recall properties of the trion model of cortical organization, Biol. Cybern.53:259 (1986).

    Google Scholar 

  5. J.V. McGran’n, G.L. Shaw, D.J. Silverman, D.J., and J.C. Pearson, Higher temperature phases of a structured model of cortical organization, Physical ReviewA43:5678 (1991).

    ADS  Google Scholar 

  6. K.V. Shenoy, J. Kaufman, J.V. McGrann and Shaw, G.L., Learning by selection in the trion model of cortical organization Cerebral Cortex3:239 (1993).

    Article  Google Scholar 

  7. J.V. McGrann, G.L. Shaw, K.V. Shenoy, X. Leng, and R.B. Mathews, Computation by symmetry operations in a structured model of the brain, Physical ReviewE49:5830 (1994).

    ADS  Google Scholar 

  8. F.H. Rauscher, G.L. Shaw, and K.N. Ky, Music and spatial task performance, Nature, 365:611 (1993).

    Article  ADS  Google Scholar 

  9. F.H. Rauscher, G.L. Shaw, and K.N. Ky, Listening to Mozart enhances spatial-temporal reasoning:towards a neurophysiological basis, Neuroscience Letters185:44 (1995).

    Article  Google Scholar 

  10. F.H. Rauscher, G.L. Shaw, L.J. Levine, E.L. Wright, W.R. Dennis and R.L. Newcomb, Evidence that music training yields long-term enhancement of preschool children’s reasoning abilities, submitted for publication.

    Google Scholar 

  11. J.J. Hopfield, Neural networks and physical systems with emergent collective computational behavior, Proc. Natl. Acad. Science, USA, 79:2554 (1982).

    Google Scholar 

  12. W.A. Little, Existence of persistent states in the brain, Math. Biosci.19:101 (1974).

    Article  MATH  Google Scholar 

  13. B. Katz, The Release of Neural Transmitter Substances., Thomas, Springfield (1969).

    Google Scholar 

  14. G.L. Shaw and R. Vasudevan, Persistent states of neural networks and the random nature of synaptic transmission, Math. Biosci.21:207 (1974).

    Article  MATH  Google Scholar 

  15. W.A. Little and G.L. Shaw, A statistical theory of short and long-term memory Behav. Biol. 14:115 (1975).

    Google Scholar 

  16. W.A. Little and G.L. Shaw, Analytic study of the storage capacity of a neural network, Math. Biosc.39:281 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. J.V. McGrann, Further theoretical investigations of the trion model of cortical organization. Ph.D. Thesis, University of California, Irvine (1992).

    Google Scholar 

  18. G.J. Allman, ’Greek Geometry from Thales to Euclid Arno,’ New York (l976).

    Google Scholar 

  19. M. Hassler, N. Birbaumcr and A. Feil, Musical talent and visual-spatial abilities:a longitudinal study, Psychology of Music13:99 (1985).

    Google Scholar 

  20. L.D. Cranberg and M.L. Albert, The chess mind, In The exceptional brain, L.K. Obler and D. Fein, eds., Guilford, New York (1988).

    Google Scholar 

  21. W.S. Boettcher, S.S. Hahn, and G.L. Shaw, Mathematics and music:a search for insight into higher brain function, Leonardo Music J. 4:53 (1994).

    Article  Google Scholar 

  22. V.B. Mountcastle, An organizing principle for cerebral function:the unit module and the distributed system. In The Mindful Brain, G. M. Edelman and V.B. Mountcastle, eds., MIT, Cambridge (1978).

    Google Scholar 

  23. D.O. Hebb, Organization of Behavior, Wiley, New York, (1949).

    Google Scholar 

  24. X. Leng, G.L. Shaw, and E.L. Wright, Coding of musical structure and the trion model of cortex, Music Perception8:49 (1990).

    Google Scholar 

  25. L. Brothers, G.L. Shaw, and E.L. Wright, Durations of extended mental rehearsals are remarkably reproducible in higher level human performance, Neurological Research15:413 (1993).

    Google Scholar 

  26. W.G. Chase and H.A. Simon, The mind’s eye in chess., In Visual information processing, W. G. Chase (Ed.), Academic Press, New York (1973).

    Google Scholar 

  27. H. Petsche, P. Richter, A. von Stein, S. Etlingcr and O. Filz, EEG coherence and musical thinking, Music Perception11:117 (1993).

    Google Scholar 

  28. K. Wynn, Addition and subtraction by human infants, Nature358:749 (1992).

    Google Scholar 

  29. E.S. Spelke, Principles of object perception, Cognitive Science14:29 (1990).

    Article  Google Scholar 

  30. S.A. Trehub, Infants’ perception of music patterns, Perception and Psychophysics41:635 (1987).

    Article  Google Scholar 

  31. C.L. Krumhansl and P.W. Jusczyk, Infants’ perception of phrase structure in music, Psychological Science1:70 (1990).

    Google Scholar 

  32. I. Peretz, R. Kolinsky, M. Tramo, R. Labrccque, C. Hublct, G. Demeurisse, S. Belleville, Functional dissociations following bilateral lesions of auditory cortex, Brain117:1283 (1994).

    Article  Google Scholar 

  33. P.S. Goldman-Rakic, Introduction:the frontal lobes:uncharted provinces of the brain, Trends Neurosci. 7:425 (1984).

    Article  Google Scholar 

  34. T. Bonhoeffer. and A. Grinvald, Iso-orientation domains in cat visual cortex arranged in pinwheel-like patterns, Nature353:429 (1991).

    Article  ADS  Google Scholar 

  35. M.E. Fisher and W. Sclkc, Infinitely many commensurate phases in a simple Ising model, Phys. Rev Lett.44:1502 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  36. G.L. Shaw and K.J. Roncy, Analytic solution of a neural network theory based on an Ising spin system analogy Phys. Lett. 74A:146 (1979).

    ADS  Google Scholar 

  37. S.H. Shanbhag, Robotic motion and the trion model of the cortex, unpublished report (1991)

    Google Scholar 

  38. G.M. Edelman, Neural Darwinism:The Theory of Neuronal Group Selection, Basic, New York (1987).

    Google Scholar 

  39. D.E. Rumelhart, J.E. McClclland and PDP Research Group, eds., Parallel Distributed Processing, MIT, Cambridge (1986).

    Google Scholar 

  40. R.N. Shepard and J. Metzlcr, Mental rotation of three-dimensional objects, Science171:701 (1971).

    Article  ADS  Google Scholar 

  41. I. Mintz and H. Korn, Serontonergic facilitation of quantal release at central inhibitory synapses, J. of neuroscience11:3359 (1991).

    Google Scholar 

  42. J. Sarthein, A. von Stein, H. Pctsche, G.L. Shaw and F.R. Rauscher, EEG investigation of the positive cffccl of music on spatial-temporal reasoning, manuscript in preparation.

    Google Scholar 

  43. K.R. Karplus, S. Pulos and E.K. Stage, Early adolescent’s proportional reasoning on‘rate’ problems, Educational Studies in Math14:219 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Shaw, G.L. (1996). Computation by Symmetry Operations in a Structured Neural Model of the Brain: Music and Abstract Reasoning. In: Cabrera, B., Gutfreund, H., Kresin, V. (eds) From High-Temperature Superconductivity to Microminiature Refrigeration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0411-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0411-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8040-5

  • Online ISBN: 978-1-4613-0411-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics