Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 287))

  • 167 Accesses

Abstract

There are three potential fates for a photon arriving at a tissue: it can be reflected, absorbed, or transmitted. All three factors are inter-related. The probability of one of these fates depends on the wavelength and the angle of incidence of the radiation, and on several characteristics of the tissue. The important characteristics of the tissue are the size and distribution of the elements with different refractive indices, and the concentration, distribution and absorption characteristics of absorbing particles. The amount of radiation transmitted is a function of all the above parameters. The complex interaction of reflectance, absorptance and scattering is important for most photoresponses in plants, whether they are involved in obtaining energy (e.g. photosynthesis), information (e.g. photomorphogenesis) or responding to the destructive effects of light (e.g. DNA dimer formation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper, T. (1979). in “Cellular Radiobiology”, Cambridge University Press.

    Google Scholar 

  • Anisimov, O. & Fukshansky, L. (1992) J. Quant. Spectr. Radiat. Transfer

    Google Scholar 

  • Basiouny, F.M., Van, T.K. & Biggs, R.H. (1978) Physiol. Plant. 42: 29–32.

    CAS  Google Scholar 

  • Beerhues, L., Robenek, H. & Wiermann, R. (1988) Planta 173: 544–553.

    CAS  Google Scholar 

  • Beggs, C.J., Holmes, M.G., Jabben, M. & Schäfer, E. (1980) Plant Physiol. 66: 615–618.

    PubMed  CAS  Google Scholar 

  • Bernhard, C.G., Gemne, G. & Moller, A.R. (1968) Quart. Rev. Biophys. 1: 89–105.

    CAS  Google Scholar 

  • Billmeyer, F.W. & Richards, L.W. (1973) J. Color and Appearance 11: 4–15.

    Google Scholar 

  • Bornman, J.F. & Vogelmann, T.C. (1988) Physiol Plant. 72: 699–705.

    Google Scholar 

  • Bornman, J.F. & Vogelmann, T.C. (1991) J. Exp. Bot. 42,:547–554.

    Google Scholar 

  • Bornman, J.F. & Teramura, A.H. (1993) in “Environmental UV Photobiology”, (Young, A.R. et al, ed) pp. 427–471, Plenum, New York.

    Google Scholar 

  • Bone, R.A., Lee, D.W. & Norman, J.M. (1985) Appl. Optics 24: 1408–1412.

    CAS  Google Scholar 

  • Brehm, B.G. & Krell, D. (1975) Science 190,: 1221–1223.

    Google Scholar 

  • Britz, S.J. (1979) in “Encyclopedia of Plant Physiology”, New Series, Vol. 7, Physiology of Movements, pp. 170–198, (Haupt, W. anf Feinleib, M.E., eds.), Springer Verlag, Berlin.

    Google Scholar 

  • Britz, S.J. & Briggs, W.R. (1987) Acta Physiol. Plant. 9: 149–162.

    Google Scholar 

  • Britz, S.J., Pfau, J., Nultsch, W. & Haupt, W. (1976) Plant Phsiol. 58: 17–21.

    CAS  Google Scholar 

  • Bruns, B., Hahlbrock, K., & Schäfer, E. (1986) Planta 169: 393–398.

    CAS  Google Scholar 

  • Byott, G.S. (1976) New Phytol. 76: 295–299.

    Google Scholar 

  • Caldwell, M.M., Robberecht, R. & Flint, S.D. (1983) Physiol. Plant. 58: 445–450.

    CAS  Google Scholar 

  • Causton, D.R. & Venus, J.C. (1981). The Biometry of Plant Growth. Edward Arnold, London.

    Google Scholar 

  • Cen, Y-P. & Bornman, J.F. (1993) Physiol. Plant. 87: 249–255.

    CAS  Google Scholar 

  • Chandrasekhar, S. (1960). Radiative Transfer. Oxford University Press, London.

    Google Scholar 

  • Chappell, J. & Hahlbrock, K. (1984) Nature 311: 76–78.

    CAS  Google Scholar 

  • Curcio, J.A. & Petty, C.C. (1951) J. Opt. Soc. Am. 41: 302–304.

    CAS  Google Scholar 

  • Cutler, D.F., Alvin, K.L. & Price, C.E. (1980) The Plant Cuticle. Academic Press, London.

    Google Scholar 

  • Day, T.A., Vogelmann, T.C. & DeLucia, E.H. (1992) Oecologia 92: 513–519.

    Google Scholar 

  • Diffey, B.L. (1983) Phys. Med. Biol. 28: 647–657.

    PubMed  CAS  Google Scholar 

  • Duysens, L.N.M. (1956) Biochim. Biophys. Acta 19: 1–12.

    PubMed  CAS  Google Scholar 

  • Ehlenringer, J. (1980) in “Adaptation of Plants to Water and High Temperature Stress”, pp. 295–308 (Turner, N. C. & Kramer, P.J., eds.). Wiley, New York.

    Google Scholar 

  • Ehleringer, J.R. & Björkman, O. (1978) Oecologia 36: 151–162.

    Google Scholar 

  • Ehleringer, J.R., Björkman, O. & Mooney, H.A. (1976) Science 19:, 376–377.

    Google Scholar 

  • Eller, B.M. (1977) J. Exp. Bot. 28: 1054–1059.

    Google Scholar 

  • Evans, G.C. (1972) The Quantitative Analysis of Plant Growth. Blackwells, Oxford.

    Google Scholar 

  • Flint, S.D. & Caldwell, M.M. (1983) Am. J. Bot. 70: 1416–1419.

    Google Scholar 

  • Flint, S.D., Jordan, P.W. & Caldwell, M.M. (1985) Photochem. Photobiol. 41: 95–99.

    CAS  Google Scholar 

  • Francis, F.J. & Clydesdale, F.M. (1975) Food Colorimetry: Theory and Applications. Avi, Connecticut.

    Google Scholar 

  • Fukshansky, L. (1981) in “Plants and the Daylight Spectrum” (ed. H. Smith), pp. 21–40. Academic Press, London.

    Google Scholar 

  • Fukshansky, L. (1987) J. Quant. Spectr. Radiat. Transfer 38: 389–406.

    CAS  Google Scholar 

  • Fukshansky, L. (1991) In Photon-Vegetation Interactions, pp. 253–302, (Myeni, R.B. & Ross, J., eds). Springer, Berlin.

    Google Scholar 

  • Fukshansky-Kazarinova, N., Lork, W., Schäfer, E. & Fukshansky, L. (1986) Appl. Optics 25: 780–788.

    CAS  Google Scholar 

  • Gabry’s, H. & Walczak, T. (1980) Acta Physiol. Plant. 2: 281–290.

    Google Scholar 

  • Gates, D.M. (1980) Biophysical Ecology. Springer, New York.

    Google Scholar 

  • Gates, D.M., Keegan, H.J., Schleter, J.C. & Weidner, V.R. (1965) Appl. Optics 4: 11–20.

    Google Scholar 

  • Gausman, H.W., Rodriguez, R.R. & Escobar, D.E. (1975) Agron. J. 87: 720–724.

    Google Scholar 

  • van Gemert, M.J.C. & Star, W.M. (1987) Lasers Life Sci. 1: 287–298.

    Google Scholar 

  • Goldstein, G., Rada, F., Canales, M.O. & Zabala, O. (1989) Acta. Oecol. 10: 359–370.

    Google Scholar 

  • Haberlandt, G. (1914) Physiological Plant Anatomy. Macmillan, London.

    Google Scholar 

  • Hahlbrock, K., Knobloch, K.H., Kreuzaler, F., Potts, J.R.M. & Wellmann, E. (1976) Eur. J. Biochem. 61: 199–206.

    PubMed  CAS  Google Scholar 

  • Hahlbrock, K., Kreuzaler, F., Ragg, H., Fautz, E. & Kuhn, D.N. (1982) in “Biochemistry of Differentiation and Morphogenesis”. (L. Jaenicke, ed.), pp. 34–43. Springer, Berlin.

    Google Scholar 

  • Harnischfeger, G. & Zenk, G. (1983) Z. Naturforsch. 38: 600–603.

    Google Scholar 

  • Haupt, W. (1973) Bioscience 23: 289–296.

    Google Scholar 

  • Haupt, W. (1982) Ann. Rev. Plant Physiol. 33: 205–233.

    CAS  Google Scholar 

  • Hodgkinson, J.R. & Greenleaves, J.J. (1963) J. Opt. Soc. Am. 53: 577–588.

    Google Scholar 

  • Holmes, M.G. (1988) in “Light in Biology and Medicine”, Vol. 1, pp. 451–458, (R.H. Douglas, J. Moan & F. Dall’Acqua, ed.). Plenum Press. ISBN 0-306-42918-7.

    Google Scholar 

  • Holmes, M.G. & Fukshansky, L. (1979) Plant Cell Environ. 2: 59–65.

    Google Scholar 

  • Holmes, M.G. & Schäfer, E. (1981) Planta 153: 267–272.

    Google Scholar 

  • Holmes, M.G. & Smith, H. (1975) Nature 254: 512–514.

    CAS  Google Scholar 

  • Holmes, M.G. & Smith, H. (1977) Photochem. Photobiol. 25: 539–545.

    Google Scholar 

  • Holmes, M.G. & Wagner, E. (1980). J. Theor. Biol. 83: 255–265.

    CAS  Google Scholar 

  • Hull, H.M., Morton, H.L. & Wharrie, J.R. (1975) Bot. Rev. 41: 421–452.

    Google Scholar 

  • Humphry, V.R. (1966) Ann. Bot. 30: 39–45.

    CAS  Google Scholar 

  • Iino, M. (1990) Plant Cell Environ. 13: 633–650.

    Google Scholar 

  • Inoue, Y. & Shibata, K. (1974) Plant and Cell Phsiol. 15: 717–721.

    Google Scholar 

  • Jahnen, W. & Hahlbrock, K. (1988) Planta 173: 453–458.

    CAS  Google Scholar 

  • Johnson, P.W. & Sieburth, J.M. (1982) Limnology and Oceanography 24: 928–935.

    Google Scholar 

  • Jose, A.M. & Schäfer, E. (1978) Planta 138: 25–28.

    CAS  Google Scholar 

  • Judd, D.B. & Wyszecki, G. (1975) Color in Business, Science and Industry. Wiley, New York.

    Google Scholar 

  • Juniper, B.E. & Jeffree, C.E. (1982) Plant Surfaces. Edward Arnold, London.

    Google Scholar 

  • Karabouniotis, G., Papadopoulos, K., Papamarkou, M. & Manetas (1992) Physiol. Plant. 86: 414–418.

    Google Scholar 

  • Kasha, M. (1948) J. Opt. Soc. Am. 38: 929–934.

    PubMed  CAS  Google Scholar 

  • Kazarinova-Fukshansky, N., Seyfied, M. & Schäfer, E. (1985) Photochem. Photobiol. 41: 689–702.

    Google Scholar 

  • Keller, L.V. & Friedmann, A.A. (1924) Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit. Proc. 1st Internat. Congr. Appl. Mech., Delft, 1924.

    Google Scholar 

  • Kirk, J.T.O. (1983) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Knapp, A.K., Vogelmann, T.C., McClean, T.M. & Smith, W.K. (1988) Plant Cell Environ. 11: 257–263.

    Google Scholar 

  • Kubelka, P. (1948) J. Opt. Soc. Am. 38: 448–457.

    PubMed  CAS  Google Scholar 

  • Kubelka, P. (1954) J. Opt. Soc. Am. 44: 330–335.

    Google Scholar 

  • Kortüm, G. (1969) Reflectance Spectroscopy. Springer, Berlin.

    Google Scholar 

  • Latimer, P., Moore, D.M. & Bryant, F.D. (1968) J. Theor. Biol. 21: 348–367.

    PubMed  CAS  Google Scholar 

  • Latimer, P. & Noh, S.J. (1987) Appl. Opücs 26: 514–523.

    CAS  Google Scholar 

  • Lechowski, Z. (1974) Acta Societatis Botanicorum Poloniae 43: 531–540.

    Google Scholar 

  • Lin, Z.F. & Ehlenringer, J. (1983) Physiol. Plant. 59: 91–94.

    Google Scholar 

  • Linacre, E.T. (1969) J. Appl. Ecol. 6: 61–75.

    Google Scholar 

  • Lois, R. (1994) Planta 194: 498–503.

    CAS  Google Scholar 

  • Lois, R. & Buchanan, B.B. (1994) Planta 194: 504–509.

    Google Scholar 

  • Lork, W. & Fukshansky, L. (1985) Plant Cell Environ. 8: 33–39

    CAS  Google Scholar 

  • Lovelock, C.E., Clough, B.F. & Woodrow, I.E. (1992) Planta 188: 143–154.

    CAS  Google Scholar 

  • Mandoli, D.F. & Briggs, W.R. (1982a) Proc. Natl. Acad. Sci. USA 79: 2902–2906.

    PubMed  CAS  Google Scholar 

  • Mandoli, D.F. & Briggs, W.R. (1982b) Plant Cell Environ. 5: 137–145.

    Google Scholar 

  • McClure, J.W. (1975) in “The Flavonoids”, (J.B. Harborne, T.J. Mabry & H. Mabry, eds.), pp. 970–1055. Academic Press, New York.

    Google Scholar 

  • Meador, W.E. & Weaver, W.R. (1979) Appl. Optics 18: 1204–1208.

    CAS  Google Scholar 

  • Meyer, A.M. (1969) Z. Pflanzenphysiol. 61: 129–134.

    CAS  Google Scholar 

  • Mie, G. (1908) Annalen der Physik 25: 377–445.

    CAS  Google Scholar 

  • Mirecki, R.M. & Teramura, A.H. (1984) Plant Physiol. 74: 475–480.

    PubMed  CAS  Google Scholar 

  • Monin, A.S. & Yaglom, A.M. (1965) Statistical Hydromechanics, Vol I, Science, Moscow.

    Google Scholar 

  • Monteith, J.L. & Unsworth, M.H. (1990) Principles of Environmental Physics, 2nd edition. Edward Arnold, London.

    Google Scholar 

  • Mooney, H.A., Ehleringer, J. & Björkman, O. (1977) Oecologia 29: 301–310.

    Google Scholar 

  • Moss, R.A. & Loomis, W.E. (1952) Plant Physiol. 27: 370–391.

    PubMed  CAS  Google Scholar 

  • Mudgett, P.S. & Richards, R. (1971) Appl. Optics 10: 1485–1502.

    CAS  Google Scholar 

  • Nobel, P.S. (1983) Plant, Cell and Environ. 6: 153–159.

    Google Scholar 

  • Nultsch, W., Pfau, J. & Rüffer, U. (1981) Marine Biol. 62: 111–117.

    Google Scholar 

  • Osborne, B.A. & Raven, J.A. (1986) Biol. Rev. 61: 1–61.

    CAS  Google Scholar 

  • Parsons, A., Macleod, K., Firn, R.D. & Digby, J. (1984) Plant Cell Environ. 7: 325–332.

    Google Scholar 

  • Penndorf, R. (1962) J. Opt. Soc. Am. 52: 402–408.

    CAS  Google Scholar 

  • Poulson, M.E. & Vogelmann, T.C. (1990) Plant Cell Environ. 13: 803–811.

    Google Scholar 

  • Rabinowitch, E. (1956) Photosynthesis and related processes, Vol. II.2, Interscience, New York.

    Google Scholar 

  • Ramus, J. (1978) J. Phycol. 14: 352–362.

    Google Scholar 

  • Robberecht, R. & Caldwell, M.M. (1978) Oecologia 32: 277–287.

    Google Scholar 

  • Robberecht, R., Caldwell, M.M. & Billings, W.D. (1980) Ecology 61: 612–619.

    Google Scholar 

  • Schmelzer, E., Jahnen, W. & Hahlbrock, K. (1988) Proc. Natl. Acad. Sci. USA 85: 2989–2993.

    PubMed  CAS  Google Scholar 

  • Schnabl, H., Weissenböck, G. & Scharf, H. (1986) J. Exp. Bot. 37: 61–72.

    CAS  Google Scholar 

  • Schuster, A. (1905) Astrophys. J. 21, 1–21.

    Google Scholar 

  • Seyfried, M. (1989) in “Radiation Measurement in Photobiology”, pp. 191–223, (B.L. Diffey, ed.). Academic Press, London.

    Google Scholar 

  • Seyfried, M. & Fukshansky, L. (1983) Appl. Optics 22: 1402–1408.

    CAS  Google Scholar 

  • Seyfried, M., Fukshansky, L. & Schäfer, E. (1983) Appl. Optics 22: 492–496.

    CAS  Google Scholar 

  • Seyfried, M. & Schäfer, E. (1983) Plant Cell Environ. 6: 633–640.

    Google Scholar 

  • Seyfried, M. & Schäfer, E. (1985) Photochem. Photobiol. 42: 309–318.

    CAS  Google Scholar 

  • Shropshire Jr., W. (1974) in “Proceedings of the VI International Congress on Photobiology”., pp. 1–6, (Schenk, G.O., ed). Mulheim, Inst. Strahlenchemie im Max-Planck Inst. Kohlenforsch.

    Google Scholar 

  • Sheehy, J.E. (1975) Ann. Bot. 39: 377–386.

    Google Scholar 

  • Smith, H. & Holmes, M.G. (1977) Photochem. Photobiol. 25: 547–550.

    CAS  Google Scholar 

  • Song, P.-S., Chae, Q. & Garner, J.D. (1979) Biochim. Biophys. Acta. 576: 479–495.

    PubMed  CAS  Google Scholar 

  • Stanhill, G. (1981) in “Plants and their Atmospheric Environment”, pp.57–73, (Grace, J., Ford, E.D. & Jarvis, P.G., eds.). Blackwell, Oxford.

    Google Scholar 

  • Stapleton, A.E. & Walbot, V. (1994) Plant Physiol. 105: 881.

    PubMed  CAS  Google Scholar 

  • Steinmüller, D. & Tevini, M. (1985) Planta 164: 557–564.

    Google Scholar 

  • Takahashi, M. & Hori, T. (1984) Marine Biol. 79: 177–186.

    CAS  Google Scholar 

  • Takahashi, A., Takeda, K. & Ohnishi, T. (1991) Plant Cell Physiol. 32: 541–547.

    CAS  Google Scholar 

  • Teramura, M (1983) Physiol Plant 58: 415–427.

    CAS  Google Scholar 

  • Terashima, I. & Saeki, T. (1983) Plant Cell Physiol. 24: 1493–1501.

    CAS  Google Scholar 

  • Tevini, M., Iwanzik, W. & Teramura, A.H. (1983) Z. Pflanzenphysiol. 110: 459–467.

    CAS  Google Scholar 

  • Tevini, M. & Steinmüller, D. (1987) J. Plant Physiol. 131. 111–121.

    CAS  Google Scholar 

  • Völz, H.G. (1962) Ein Beitrag zur phänomenologischen Theorie lichtstreuender und absorbierender Medien, VI. FATIPEC Kongress 1962, pp.98–103. Verlag Chemie, Weinheim.

    Google Scholar 

  • Völz, H.G. (1964) Ein Beitrag zur phänomenologischen Theorie lichtstreuender und absorbierender Medien. Teil II: Möglichkeiten zur experimentellen Bestimmung der Konstanten. VII. FATIPEC Kongress 1964, pp. 194–201. Verlag Chemie, Weinheim.

    Google Scholar 

  • van de Hulst, H.C. (1957) Light Scattering by Small Particles. Wiley, New York.

    Google Scholar 

  • Vogelmann, T.C. (1994) in “Phtomorphogenesis in Plants”, (Kendrick, R.E. & Kronenberg, G.H.M., eds.), Kluwer, Netherlands.

    Google Scholar 

  • Vogelmann, T.C. & Björn, L-O (1984) Physiol. Plant. 60: 361–368.

    Google Scholar 

  • Warner, C.W. & Caldwell, M.M. (1983) Photochem. Photobiol. 38: 341–346.

    CAS  Google Scholar 

  • Wellmann, E. (1975) FEBS Lett. 51: 105–107.

    PubMed  CAS  Google Scholar 

  • Wendlandt, W.W. & Hecht, H.G. (1966) Reflectance Spectroscopy, pp. 253–263. Wiley, New York.

    Google Scholar 

  • Woodward, D.H. (1964) J. Opt. Soc. Am. 54: 1325–1331.

    Google Scholar 

  • Woolley, J.T. (1975) Plant Physiol. 55: 172–174.

    PubMed  CAS  Google Scholar 

  • Zurzycki, T. (1961) Acta. Soc. Bot. Pol. 30: 503–527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Holmes, M.G. (1996). Interception of Light and Light Penetration in Plant Tissues. In: Jennings, R.C., Zucchelli, G., Ghetti, F., Colombetti, G. (eds) Light as an Energy Source and Information Carrier in Plant Physiology. NATO ASI Series, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0409-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0409-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8039-9

  • Online ISBN: 978-1-4613-0409-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics