Skip to main content

A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover

  • Chapter
Chemistry for the Protection of the Environment 2

Part of the book series: Environmental Science Research ((ESRH,volume 51))

Abstract

Landfills of municipal wastes are considered to be a source of total methane emission to the atmosphere estimated at 20 to 70 Tg annually which is an important contribution (6–20%) to total anthropogenic emission (about 360 Tg). Atmospheric concentration of this very radiatively active gas (about 30 times more than CO2) is increasing at a rate of approximately 1% per year. One of the possibilities to reduce the ongoing methane concentration growth in the atmosphere is the reduction of anthropogenic emission by about 10%, which corresponds to the oxidation of 3/4 of methane emitted from landfills. According to some authors the cheapest and the most feasible way of decreasing methane emission from municipal wastes is increasing the degree of methane oxidation in the landfill cover soil.

This paper presents a general discussion of the problem and analyses the effects of different factors determining methane oxidation efficiency in landfill cover soil. Optimization of the methane oxidation process in landfill cover might be achieved based on such parameters as: type and thickness of the soil cover, pH and gas diffusion coefficient.

The possibility of a substantial increase in the degree of methane oxidation in landfill soil cover has been confirmed. It has been demonstrated that methane oxidation in soil obeys Michaelis-Menten kinetics with respect to both oxygen and methane. The methanotrophic activity in soil increases with time in the presence of elevated methane concentrations and stabilizes after about one month. The optimum pH for methane oxidation ranges from 6 to 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adamse et al., Hoeks J., de Bont J.A.M.: Microbial activities in soil near natural gas leaks, Antonie van Leeuwenhoek, 37, 251–252, 1971.

    Article  PubMed  CAS  Google Scholar 

  2. Aitchison E.: Options for controlling methane emissions from landfill sites. IPCC Workshop “Methane and Nitrous oxide”, Amersfoort, 221–230, 1993.

    Google Scholar 

  3. Bedard C., Knowles R.: Physiology, biochemistry, and specifics inhibitors of CH4, NH +4 , and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev., 53, 68–84, 1989.

    PubMed  CAS  Google Scholar 

  4. Bender M., Conrad R.: Kinetics of methane oxidation in oxic soils. Chemosphere 26, 687–696, 1993.

    Article  CAS  Google Scholar 

  5. Boeckx P., Van Cleemput O.: Methane Oxidation in a Landfill Cover Soil. A contribution to subproject BIATEX, The Proceedings of EUROTRAC Symposium `94 (ed. P.M. Bonell et al.), 521–524, 1994.

    Google Scholar 

  6. Bouwman A. F.: Introduction. In “Soils and Greenhouse Effects” (A.F. Bouwman, Ed.), 25–32. Wiley, Chichester, UK, 1990.

    Google Scholar 

  7. Bronson K.F., Mosier A.R.: Suppression of methane oxidation in aerobic soil by nitrogen fertilization, nirtification inhibitors, and urease inhibitors, Biol. Fertil. Soils, 17, 263–268, 1994.

    CAS  Google Scholar 

  8. Buchholz L.A., Klump V.J., Collins M.L.P., Brantner C.A., Remsen C.C.: Activity of methanotrophic bacteria in Green Bay sediments, FEMS Microbiology Ecology, 16, 1–8, 1995.

    Article  CAS  Google Scholar 

  9. Davis J.B., Yarbrough H.F.: Anaerobic oxidation of hydrocarbons by Desufovibrio desulfuricans. Chem. Ecol., 1, 137–144, 1966.

    Google Scholar 

  10. Ferenci T., Strom T., Quale J.R.: Oxidation of carbon monoxide and methane by Pseudomonas methanica, J. Gen. Microbiol., 91, 79–91, 1975.

    PubMed  CAS  Google Scholar 

  11. Förstner V., Calmano W., Kienz W.: Assessment of long-term metal mobility in heat-processing wastes, Water Air Soil Pollut., 57–58, 319–328, 1991.

    Article  Google Scholar 

  12. Gaudioso D., Trozzi C., Vaccaro R.: Methane emissions from landfills in Italy. IPCC Workshop “Methane and Nitrous oxide”, Amersfoort, 405–415, 1993.

    Google Scholar 

  13. Glinski J., Stêpniewski W.: Soil Aeration and its Role for Plants. CRC Press Inc., Boca Raton Florida, 1985.

    Google Scholar 

  14. Ham R.K., Hekinian K.K., Katten S.L., Lockman W.J., Lofy R.J., McFaddin D.E., Daley E.J.: Recovery, processing and utilization of gas from sanitary landfills, EPA–600/2–79–001. U.S Enviromnental Protection Agency (Solid and Hazardous Waste Res. Div.) Cincinnatti, USA, 1979.

    Google Scholar 

  15. Hoeks J.: Effect of Leaking Natural Gas on Soil and Vegetation in Urban Areas. Agricultural Research Reports 778, 120. Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, The Netherlands, 1972.

    Google Scholar 

  16. Hoeks J.: Significance of biogas production in waste tips. Waste Management & Research. 1, 323–335, 1983.

    Google Scholar 

  17. Hütsch B.W., Webster C.P., Powlson D.S.: Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk Wheat Experiment, Soil Biology and Biochemistry 25, 1307–1315, 1993.

    Article  Google Scholar 

  18. Hütsch B.W., Webster C.P., Powlson D.S.: Methane oxidation in soil as affected by land use, soil pH and N fertilization, Soil Biology &. Biochemistry., Vol. 26, No. 12, 1613–1622, 1994.

    Google Scholar 

  19. Iverson N., Oremland R.S., Klug M.J.: Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation, Limnol. Oceanogr., 32, 804–814, 1987.

    Google Scholar 

  20. Jones R.D., Morita R.Y.: Methane oxidation by Nitrosococcus oceanusand Nitrosomonas europaea, Appl. Environ. Microbiol., 45, 401–410, 1983.

    CAS  Google Scholar 

  21. Keller M., Mitre M.E., Stallard R.F.: Consumption of atmospheric methane in soils of Central Panama: effects of agricultural development, Global Biogeochemistry Cycles, 4, 21–27, 1990.

    Article  CAS  Google Scholar 

  22. Kightley D., Nedwell D.B.: Methane oxidation in landfill cover soils: can bacteria solve the emission problem ? Environ. Manage. J., 3, 24–26, 1994.

    Google Scholar 

  23. Kightley D., Nedwell D.B., Cooper M.: Capacity for Methane Oxidation in Landfill Cover Soil Measured in Laboratory-Scale Soil Microcosms, Appl. and Environ. Microbiol., 61 (2), 592–601, 1995.

    CAS  Google Scholar 

  24. King G.M.: Dynamics and control of methane oxidation in a Danish wetland sediments, FEMS Microbiology Ecology 74, 309–324, 1990.

    Article  CAS  Google Scholar 

  25. King G.M.: Ecological aspects of methane consumption, a key determinant of global methane dynamics, Advences in Microbial Ecology, 12, 431–468, 1992

    CAS  Google Scholar 

  26. Kosiur D.R., Warford A.L.: Methane production and oxidation in Santa Barbara sediments, Estuarine Coastal Mar. Sci. 8, 379–385, 1979.

    CAS  Google Scholar 

  27. Lelieveld J., Crutzen P.J.: Methane emissions into the atmosphere an overview, IPCC Workshop “Methane and Nitrous oxide”, Amersfoort, 17–25, 1993.

    Google Scholar 

  28. Lessard R., Rochette R, Topp E., Pattey E., Desjardins R.L.,Beaumont G.: Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites, Canadian Journal of Soil Science, 74, 2, 1994.

    Article  Google Scholar 

  29. Lidstrom L.E., Stirling D.I.: Methylotrophs: Genetics and commercial application. Annu Rev. Microbiol. 44, 27–58, 1990.

    Article  CAS  Google Scholar 

  30. Miura Y., Watanabe A., Murase J., Kimura M.: Methane Production and Its Fate in Paddy Fields. I1. Oxidation of Methane and Its Coupled Ferric Oxide Reduction in Subsoil, Soil Sci. Plant Nutr., 38 (4), 673–679, 1992.

    CAS  Google Scholar 

  31. Mosier A.R., Schimel D.S.: Influence of agricultural nitrogen on atmospheric methane and nitrous oxide, Chemistry and Industry 23, 874–877, 1991.

    Google Scholar 

  32. Murase J., Kimura M.: Methane Production and Its Fate in Paddy Fields. IV. Sources of Microorganisms and Substrates Responsible for Anaerobic Methane Oxidation in Subsoil, Soil Sci. Plant Nutr., 40 (1), 57–61, 1994.

    CAS  Google Scholar 

  33. Murase J., Kimura M.: Methane Production and Its Fate in Paddy Fields. VI. Anaerobic oxidation of methane in plow layer soil, Soil Sci. Plant Nutr., 40 (3), 505–514, 1994.

    CAS  Google Scholar 

  34. Murase J., Kimura M.: Methane Production and Its Fate in Paddy Fields. VII. Electron Acceptors Responsible for Anaerobic Methane Oxidation. Soil Sci. Plant Nutr., 40 (4), 647–6654, 1994.

    CAS  Google Scholar 

  35. Nesbit S.P., Breitenbeck G.A.: A laboratory study of factors influencing methane uptake by soil, Agriculture, Ecosystems and Envronment, 421, 39–54, 1992.

    Article  Google Scholar 

  36. Panganiban A.T. Patt T.E. Hart W., Hanson R.S.: Oxidation of methane in the absence of oxygen in lake water samples, Appl. Environ. Microbiol. 37, 303–309, 1979.

    PubMed  CAS  Google Scholar 

  37. Reeburgh R.S., Heggie D.T.: Microbial methane consumption reactions and their effect on methane distribution in freshwater and marine environments, Limnol. Oceanogr., 22, 1–9, 1977.

    CAS  Google Scholar 

  38. Ribbons D.W., Harrison J.E., Wadzinski A.M.: Metabolism of single carbon compounds, A. Rev. Microbiol., 24, 135–158, 1970.

    Article  CAS  Google Scholar 

  39. Seiler C.W., Scharffe D.: Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soil. Journal of Atmospheric Chemistry 1, 171–186, 1984.

    Article  CAS  Google Scholar 

  40. Sitaula B.K., Bakken L.R.: Nitrous oxide release from spruce forest soil: relationships with nitrification, methane uptake, temperature, moisture and fertilization, Soil Biology & Biochem., 25 (10), 1415–1421, 1993.

    Article  CAS  Google Scholar 

  41. Söhngen N.L.: Ueber Bakterien, welche Methan als Kohlenstoffennahrung Energiequelle gebrauchen. Zentralb. Bakteriol. 15, 513–517, 1906.

    Google Scholar 

  42. Stegmann R.: Beschreibung eines Verfahrens zur Untersuchung anaerober Umsentzungprozesse von festen Abfallstoffen im Labormassstab (Laboratory research on anaerobic degradation processes in solid waste), Müll and Abfall 2 /81, 35–39, 1981.

    Google Scholar 

  43. Thorneloe S.A.: Methane emissions from landfills and open dumps. IPCC Workshop “Methane and Nitrous oxide”, Amersfoort, 93–113, 1993.

    Google Scholar 

  44. Whalen S.C., Reeburgh WS., Sandbeck K.A.: Rapid methane oxidation in a landfill cover soil, Applied and Environmental Microbiology 56, 3405–3411, 1990.

    PubMed  CAS  Google Scholar 

  45. Yavitt J.B., Downey D.M., Lancaster E., Lang G.E.: Methane consumption in decomposing Sphagnum-derived peat, Soil Biology and Biochemistry, 22, 441–447, 1990.

    Article  CAS  Google Scholar 

  46. Yavitt J.B., Downey D.M., Lang G.E., Sexstone A.J.: Methane consumption in two temperate forest soils, Biogeochemistry 9, 39–52, 1990.

    Article  CAS  Google Scholar 

  47. Yavitt J.B., Fahey J.: Production of methane and nitrous oxide by organic soils within a northern hardwood ecosystem, In “Biogeochemistry of global change - radiatively active trace gases”, 10th Int. Symp. Environ. Biogeochemistry, San Francisco, 261–277, 1991.

    Google Scholar 

  48. Zehnder A.J.B., Brock T.D.: Anaerobic methane oxidation: Occurence and ecology, Appl. Environ. Microbiol., 39, 194–204, 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Stępniewski, W., Pawłowska, M. (1996). A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover. In: Pawłowski, L., Lacy, W.J., Uchrin, C.G., Dudzińska, M.R. (eds) Chemistry for the Protection of the Environment 2. Environmental Science Research, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0405-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0405-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8037-5

  • Online ISBN: 978-1-4613-0405-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics