Sorption Characteristics of Organic Compounds in Landfill Leachate by Modified Clays

  • Jiunn-Fwu Lee
  • Pao-Mei Liaw
  • Chi-Chan Hwang
  • E. E. Chang
Part of the Environmental Science Research book series (ESRH, volume 51)

Abstract

Natural clays were modified by substituting inorganic ions with the organic cations hexadecyltrimethylammonium (HDTMA), dodecyltrimethylammonium (DDTMA) and Tetramethylammonium (TMA). This resulted in the clays having significantly higher organic matter contents in proportion to the amount of carbon in each organic cation. The sorption behavior of different molecular-weight organic compounds from leachate by different sorbents was also investigated. The batch experiments indicated that the sorption of modified clays is more sensitive to pH than granular activated carbon (GAC). In general, the sorption capacities of the modified clays increased with increasing sorbate molecular weights. In contrast, the activated carbon was found to be an effective sorbent rather than modified clays for organic compounds with small molecular weights. Moreover, the surface characteristics of sorbents with their sorption behaviors indicated that the sorption mechanism of modified clays is different from that in activated carbon. The uptake of organic compounds in landfill leachates by modified clays depends on the organic contents of the modified clays, and the sorption mechanism of activated carbon is surface adsorption. Experimental results indicated that GAC combined with a modified clay effectively reduces leachate Chemical Oxygen Demand (COD), and might be further used to enhance the containment capabilities of clay landfill liners.

Keywords

Clay Cellulose HPLC Hydration Filtration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mortland, M. M. Adv. Agron., 22 (1972), 75–117.CrossRefGoogle Scholar
  2. 2.
    Theng, B. K. G. The Chemistry of Clay-Organic Reactions; Wiley: New York, (1974), 343.Google Scholar
  3. 3.
    Parris, G. E. Residue Rev., 76 (1980), 1–30.PubMedGoogle Scholar
  4. 4.
    Chiou, C. T.; Peter, L. J.; Frees, V H. Science, 206 (1979), 831–832PubMedCrossRefGoogle Scholar
  5. 5.
    Chiou, C. T.; Porter, P. E. Schemdding, D. W. Environ. Sci. Technol., 17 (1983), 227–231CrossRefGoogle Scholar
  6. 6.
    Briggs, G. G. Nature, 223 (1969), 1288.CrossRefGoogle Scholar
  7. 7.
    Karickhoff, S. W.; Brown, D. S.; Scott, T. A. Water Res., 13 (1979), 241–248CrossRefGoogle Scholar
  8. 8.
    Garbarini, D. R.; Lion, L. W. Environ. Sci. Technol., 20 (1980), 1263–1269CrossRefGoogle Scholar
  9. 9.
    Hassett, J. J.; Means, J. C.; Banwart, W. J.; Wood, S. A.; Khan, A. J. Environ. Qual., 9 (1980), 184–186CrossRefGoogle Scholar
  10. 10.
    Boyd, S. A.; Lee, J. F.; Mortland, M. M.; Nature, 333 (1988), 345–347CrossRefGoogle Scholar
  11. 11.
    Lee, J. F.; Crum, J. R.; Boyd, S. A.; Environ. Sci. Technol., 23 (1989), 1365–1372CrossRefGoogle Scholar
  12. 12.
    Lee, J. F.; Mortland, M. M.; Boyd, S. A.; Chiou, C. T.; J. Chem. Soc., Faraday Trans. 1,, 85 (1989), 2953–2962CrossRefGoogle Scholar
  13. 13.
    Lee, J. F.; Mortland, M. M.; Chiou, C. T.; Kile, D. E.; Boyd, S. A.; Clays Clay Miner, 38 (1990), 113–120CrossRefGoogle Scholar
  14. 14.
    Boyd, S. A.; Mortland, M. M.; Chiou, C. T.; Soil Sci. Soc. Am. J., 52 (1988), 652–657CrossRefGoogle Scholar
  15. 15.
    Mortland, M. M.; Shaobai, S.; Boyd, S. A.; Clays Clay Miner. 34 (1986), 581–588CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Jiunn-Fwu Lee
    • 1
  • Pao-Mei Liaw
    • 1
  • Chi-Chan Hwang
    • 1
  • E. E. Chang
    • 2
  1. 1.Graduate Institute of Environ. Eng.Natl. Central UniversityChung LiTaiwan, ROC
  2. 2.Dept. Analytical Chem.Taipei Medical CollegeTaipeiTaiwan, ROC

Personalised recommendations