Transport Spectroscopy of Single and Coupled Quantum Dots in Single Electron Tunneling

  • Rolf J. Haug


In recent years interest arose into the study of transport through quantum dots. The interest is driven by two reasons. First, small devices like quantum dots and charging effects [1] In such devices open the possibility for future applications in electronics as transistors, memory cells, sensors etc. Small devices are especially interesting in high frequency applications due to their small capacitances. Although different schemes for applications have been proposed, none of it is under development or even in production and it is not clear what will be of real use in the end. The second reason for the interest into these systems is a basic physics point-of-view. These systems are extremely interesting since single quantum dots can be seen as a sort of artificial atom. In this manner-of-speaking coupled quantum dots can be called artificial molecules. These quantum dots are similar to atoms or molecules since a certain number of electrons is confined in a potential. But, in contrast to real atoms, in these artificial systems the number of electrons, the size of the system and the strength of the confinement potential can easily be changed. Therefore, in these quantum dots parameters, such as the ratio between cyclotron frequency and confinement energy or coupling strength between two quantum dots etc, can be easily varied, which is not achievable in real atoms or molecules.


Negative Bias Voltage High Frequency Application Single Electron Tunneling Real Atom Resonant Tunneling Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Single Electron Tunneling and Mesoscopic Devices eds. H. Koch and H. Lübbig, Springer Series in Electronics and Photonics, Springer Berlin (1992); Single Charge Tunneling eds. H. Grabert and M.H. Devoret, Plenum Press New York (1992).Google Scholar
  2. [2]
    M. A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988); M. Tewordt, V.J. Law, M.J. Kelly, R. Newbury, M. Pepper, D.C. Peacock, J.E.F. Frost, D.A. Ritchie and G.A.C. Jones, J. Phys.: Condens. Matter 2, 8969 (1990); B. Su, V.J. Goldman, M. Santos, and M. Shayegan, Appl. Phys. Lett. 58, 747 (1991); S. Tarucha, Y. Hirayama, T. Saku, and T. Kimura, Phys. Rev. B. 41, 5459 (1990).CrossRefGoogle Scholar
  3. [3]
    U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 63,1893 (1990); L.P. Kouwen-hoven, N.C. van der Vaart, A.T. Johnson, W. Kool, C.J.P.M. Harmans, J.G. Williamson, A.A.M. Staring, and CT. Foxon, Z. Phys. B 85, 367 (1991); R.J. Haug, K.Y. Lee, and J.M. Hong, in Single-Electron Tunneling and Mesoscopic Devices, Eds: H. Koch, H. Lübbig, Springer, Berlin (1992).Google Scholar
  4. [4]
    T. Schmidt, M. Tewordt, R.J. Haug, K. v. Klitzing, A. Förster, and H. Löth, Solid State Electron.; T. Schmidt, M. Tewordt, R.J. Haug, K. v. Klitzing, B. Schönherr, P. Grambow, A. Förster, and H. Löth (to be published).Google Scholar
  5. [5]
    T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. v. Klitzing, A. Förster, and H. Lüth, Phys. Rev. B 51, 5570 (1995).ADSCrossRefGoogle Scholar
  6. [6]
    R.J. Haug, R.H. Blick, and T. Schmidt, Physica B 704(1995).Google Scholar
  7. [7]
    M.R. Deshpande, E.S. Hornbeck, P. Kozodoy, N.H. Dekker, J.W. Sleight, M.A. Reed, C.L. Fernando, and W.R. Frensley, Semic. Sci. Techn 9, 1919 (1994).ADSCrossRefGoogle Scholar
  8. [8]
    P. Gueret, N. Blanc, R. Germann, and H. Rothuizen, Phys. Rev. Lett. 68, 1896 (1992); M.W. Dellow, P.H. Beton, C.J.G.M. Langerak, T.J. Foster, P.C. Main, L. Eaves, M. Henini, S.P. Beaumont, and C.D.W. WilkinsonPhys. Rev. Lett 68, 1754 (1992).ADSGoogle Scholar
  9. [9]
    J. Weis, R.J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. Lett. 71, 4019 (1993); R.J. Haug, J. Weis, K. v. Klitzing, and K. Ploog, Physica B 194-196, 1253 (1994); R.J. Haug, Advances in Solid State Physics 34, 219 (1994).CrossRefGoogle Scholar
  10. [10]
    F. Hofmann, T. Heinzel, D.A. Wharam, J.P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 51, 13872 (1995).ADSCrossRefGoogle Scholar
  11. [11]
    R.H. Blick, R.J. Haug, J. Weis, D. Pfannkuche, K. v. Klitzing, and K. Eberl (to be published).Google Scholar
  12. [12]
    A.T. Johnson, L.P. Kouwenhoven, W. de Jong, N.C. van der Vaart, C.J.P.M. Harmans, and C.T. Foxon, Phys. Rev. Lett. 69, 1592 (1992); E.B. Foxman, P.L. McEuen, U. Meirav, N.S. Wingreen, Y. Meir, P.A. Belk, N.R. Belk, M.A. Kastner, and S.J. Wind, Phys. Rev. B 47, 10020 (1993).Google Scholar
  13. [13]
    N.C. van der Vaart, S.F. Godijin, Y.V. Nazarov, C.J.P.M. Harmans, J.E. Mooij, L.W. Molenkamp, and C.T. Foxon, Phys. Rev. Lett 74, 4702 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 1996

Authors and Affiliations

  • Rolf J. Haug
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartFederal Republic of Germany

Personalised recommendations