Skip to main content

Microscopic Analysis of Noise Behavior in Semiconductor Devices by the Cellular Automaton Method

  • Chapter

Abstract

Noise is one of the crucial features in modern semiconductor devices. Nevertheless, only a few microscopic investigations of intrinsic noise behavior of semiconductor devices in the GHz regime have been performed in the past [1]. Although the dependency of intrinsic noise on the doping concentration, applied voltages and the influence of hot carrier effects is an important issue, systematic investigations are hampered by the fact that very long time sequences have to be simulated for the calculation of the relevant correlation functions. For semiconductor devices, such simulations are usually performed with the Monte Carlo method, self-consistently coupled to a Poisson equation. In [2], we have shown a highly efficient cellular automaton (CA) approach to be physically equivalent to the Monte Carlo technique for macroscopic transport quantities. However, our initial implementation of the CA method showed discrete lattice effects that led to a slightly enhanced carrier diffusion and hampered an accurate calculation of correlation functions. We have recently developed a new scheme for the CA that eliminates this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Varani and L. Reggiani, “Microscopic theory of electronic noise in semiconductor unipolar structures,” La Rivista del Nuovo Cimento vol. 17, no. 7, p. 1, 1994 and references therein.

    Google Scholar 

  2. K. Kometer, G. Zandler, K. Kometer, and P. Vogl, “Lattice-gas cellular automaton method for semiclassical transport in semiconductors,” Phys. Rev. B, vol. 46, p. 1238, 1992.

    Article  Google Scholar 

  3. J. Zimmermann and E. Constant, “To hot carrier diffusion noise calculation in unipolar semiconducting components,” Solid state electronics vol. 23, no. 9, p. 915, 1980.

    Article  ADS  Google Scholar 

  4. T. Gonzalez, D. Pardi, L. Varani, and L. Reggiani, “Monte Carlo simulation of electronic noise in MESFET” in GAAS 94 proceedings of the european gallium arsenide and related compounds p. 385, Politecnico di Torino, Apr. 1994 and references therein.

    Google Scholar 

  5. M. Saraniti, A. Rein, G. Zandler, P. Vogl, and P. Lugli, “An efficient multigrid poisson solver for device simulations,” sub. to IEEE transactions on computer aided design ofintergated circuits and systems, 1995.

    Google Scholar 

  6. V. Gruzinskis, S. Kersulis, and A. Reklatis, “An effcient Monte Carlo particle technique for two-dimensional transistor modelling,” Semicond. Sci. Technol, vol. 6, pp. 602–606, 1991.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Rein, A., Zandler, G., Saraniti, M., Lugli, P., Vogl, P. (1996). Microscopic Analysis of Noise Behavior in Semiconductor Devices by the Cellular Automaton Method. In: Hess, K., Leburton, JP., Ravaioli, U. (eds) Hot Carriers in Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0401-2_113

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0401-2_113

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8035-1

  • Online ISBN: 978-1-4613-0401-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics