Combining 2H and 13C Selective Enrichment to Probe Protein Dynamics

  • David M. LeMaster


The dipolar interactions between 13C nuclei and the directly attached 1H nuclei offer a potentially rich set of spectroscopic monitors of the dynamical behavior of biological macromolecules. However, in contrast to the more widely exploited 1H-15N dipoles of the mainchain amide resonances of proteins, additional technical complexities have impeded the more extensive use of 13C relaxation analysis. As for the case of 15N studies, the low sensitivity of natural abundance samples have limited 13C relaxation studies to quite small highly soluble systems. On the other hand uniform enrichment introduces scalar and dipolar interactions between directly bonded 13C nuclei which confound the interpretation of the conventional pulse sequences used in relaxation analysis. Progress has been reported in the development of pulse sequences to circumvent some of the complications arising from geminal 13C nuclei,1,2 but a general solution is not yet available. An alternate approach which allows for extensive high levels of site specific enrichment with minimal occurrence of geminal 13C-13C couplings can be achieved via protein expression in bacterial strains carrying suitable metabolic lesions so as to direct the flow of isotopic label from selectively enriched carbon sources.


Isotope Shift Quadrupolar Interaction Scalar Coupling Methylene Position Stereochemical Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yamazaki, R. Muhandiram and L. E. Kay, NMR Experiments for the Measurement of Carbon Relaxation Properties in Highly Enriched, Uniformly 13C,15N-Labeled Proteins: Application to 13Cα Carbons,J. Am. Chem. Soc. 116:8266 (1994).CrossRefGoogle Scholar
  2. 2.
    J. Engelke and H. Ruterjans, Determination of 13Cα Relaxation Times in Uniformly 13C/15N-Enriched Proteins,J. Biomolec. NMR. 5:173 (1995).CrossRefGoogle Scholar
  3. 3.
    A. G. Palmer, P. E. Wright and M. Ranee, Measurement of Relaxation Time Constants for Methyl Groups by Proton-Detected Heteronuclear NMR Spectroscopy,Chem. Phys. Lett. 185:41 (1991).CrossRefGoogle Scholar
  4. 4.
    L. E. Kay, T. E. Bull, L. K. Nicholson, C. Greisinger, H. Schwalbe, A. Bax and D. A. Torchia, The Measurement of Heteronuclear Transverse Relaxation Times in aX3 Spin Systems via Polarization-Transfer Techniques, J. Magn. Reson. 100:538 (1992).Google Scholar
  5. 5.
    V. A. Daragan, M. A. Kloczewiak and K. H. Mayo, 13C Nuclear Magnetic Relaxation-Derived Φ,Ψ Bond Rotational Energy Barriers and Rotational Restrictions for Glycine 13Cα-Methylenes in a GXX-Repeat Hexapeptide,Biochemistry. 32:10580 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Ernst and R. R. Ernst, Heteronuclear Dipolar Cross-Correlated Cross Relaxation for the Investigation of Side-Chain Motion, J. Magn. Reson. Ser. A 110:202 (1994).CrossRefGoogle Scholar
  7. 7.
    H. Egli and W. von Philipsborn, Conformational Dependence of One-Bond CαHα Spin Coupling in Cyclic Peptides,Helv. Chirn. Acta. 64:976 (1981).CrossRefGoogle Scholar
  8. 8.
    D. F. Mierke, S. G. Grdadolnik and H. Kessler, Use of One-Bond Cα-Hα Coupling Constants as Restraints in MD Simulations,J. Am. Chem. Soc. 114:8283 (1992).CrossRefGoogle Scholar
  9. 9.
    G. W. Vuister, F. Delaglio and A. Bax, The Use of 1JCαHα Coupling Constants as a Probe for Protein Backbone Conformation,J. Biomolec. NMR. 3:67 (1993).Google Scholar
  10. 10.
    R. J. Homer, M. S. Kim and D. M. LeMaster, The Use of Cystathionine γ-Synthase in the Production of α and Chiral β Deuterated Amino Acids,Anal. Bloch. 215:211 (1993).CrossRefGoogle Scholar
  11. 11.
    D. M. Kushlan and D. M. LeMaster, Resolution and Sensitivity Enhancement of Heteronuclear Correlation for Methylene Resonances via 2H Enrichment and Decoupling,J. Biomolec. NMR. 3:701 (1993).CrossRefGoogle Scholar
  12. 12.
    D. M. LeMaster, J. C. Laluppa and D. M. Kushlan, Differential Deuterium Isotope Shifts and One-Bond 1H-13C Scalar Couplings in the Conformational Analysis of Protein Glycine Residues,J. Biomolec. NMR. 4:863 (1994).CrossRefGoogle Scholar
  13. 13.
    P. E. Hansen, Isotope Effects in Nuclear Shielding,Prog. NMR Spectrosc. 20:207 (1988).CrossRefGoogle Scholar
  14. 14.
    S. Berger, Chemical Models for Deuterium Isotope Effects in 13C and 19F NMR,NMR Basic Princ. Prog. 22:1 (1990).Google Scholar
  15. 15.
    D. J. DeFrees, M. Taagepera, B. A. Levi, S. K. Pollack, K. D. Summerhays, R. W. Taft, M. Wolfsberg and W. J. Hehre, Role of Hyperconjugation in Secondary β-Deuterium Isotope Effects,J. Am. Chern. Soc. 101:5532 (1979).CrossRefGoogle Scholar
  16. 16.
    K. B. Wiberg, V. Walters and S. D. Colson, A Vibrational Force Field for Acetaldehyde,J. Phys. Chern. 88:4723 (1984).CrossRefGoogle Scholar
  17. 17.
    W. B. Farnham, B. E. Smart, W. J. Middleton, J. C. Calabrese and D. A. Dixon, Crystal and Molecular Structure of [(CH3)2]3S+CF3O-. Evidence for Negative Fluorine Hyperconjugation,J. Am. Chern. Soc. 107:4565 (1985).CrossRefGoogle Scholar
  18. 18.
    A. Rathna and J. Chandrasekar, The Influence of Lone-pair Repulsions on C-C Bond Lengths,J. Chern. Soc., Perkins Trans II. 1661 (1991).Google Scholar
  19. 19.
    I. H. Williams, Calculated Conformatônal Equilibrium Iostope Effect for [2H1]Cyclohexane,J. Chern. Soc. Chem. Commun. 627 (1986).Google Scholar
  20. 20.
    R. Aydin and H. Gunther, Chemical Applications of NMR Isotope Effects: Ring Inversion and Conformational Equilibrium in [2H1]Cyclohexane,Angexv. Chem. Int. Ed. 985 (1981).Google Scholar
  21. 21.
    R. E. London, D. M. LeMaster and L. G. Werbelow, Unusual NMR Multiplet Structures of Spin 1/2 Nuclei Coupled to Spin 1 Nuclei,J. Am. Chem. Soc. 116:8400 (1994).CrossRefGoogle Scholar
  22. 22.
    S. Grzesiek and A. Bax, Interference between Dipolar and Quadrupolar Interactions in the Slow Tumbling Limit: A Source of Line Shift and Relaxation in 2H-Labeled Compounds, J. Am. Chem. Soc. 116:10196 (1994).CrossRefGoogle Scholar
  23. 23.
    D. M. LeMaster and J. E. Cronan, Jr., Biosynthetic Production of 13C-Labeled Amino Acids with Site-Specific Enrichment,J. Biol. Chem. 257:1224 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • David M. LeMaster
    • 1
  1. 1.Department of Biochemistry, Molecular Biology and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations