Skip to main content

NMR Structures of Proteins Involved in Signal Transduction

  • Chapter
NMR as a Structural Tool for Macromolecules

Abstract

Signal transduction is a complicated process that may involve several steps mediated by specific intermolecular interactions. Recently, three-dimensional structures of proteins involved in signal transduction have been obtained and have greatly aided in our understanding of these processes at the molecular level.1,2 In this paper, three-dimensional structures of three proteins that are involved in signal transduction will be described, including (1) a protein tyrosine phosphatase, (2) a pleckstrin homology (PH) domain, and (3) the DNA-binding domain of a member of the ets family of transcription factors, Fli-1, in the DNA-bound form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. Cohen, R. Ren, and D. Baltimore, Modular binding domains in signal transduction proteins, Cell 80:237 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. T. Pawson, Protein modules and signalling networks, Nature 373:573 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. T. Hunter, Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling, Cell 80:225 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. A. Waheed, P.M. Laider, Y.-Y.P. Wo, and R.L. Van Etten, Purification and physicochemical characterization of a human placental acid phosphatase possessing phosphotyrosyl protein phosphatase activity, Biochemistry 27:4265 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. Z.-Y. Zhang and R.L. Van Etten, Purification and characterization of a low-molecular-weight acid phosphatase--a phosphotyrosyl-protein phosphatase from bovine heart, Arch. Biochem. Biophys. 228:39 (1990).

    Article  Google Scholar 

  6. M.-M. Zhou, T.M. Logan, Y. Thèriault, R.L. Van Etten, and S.W. Fesik, Backbone 1H, 13C, and 15N assignments and secondary structure of bovine low molecular weight phosphotyrosyl protein phosphatase, Biochemistry 33:5221 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. T.M. Logan, M.-M. Zhou, D.G. Nettesheim, R.P. Meadows, R.L. Van Etten, and S.W. Fesik, Solution structure of a low molecular weight protein tyrosine phosphatase, Biochemistry 33:11087 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. M. Nilges, G.M. Clore, and A.M. Gronenborn, Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding, FEBS Lett. 239:129 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. Z.-Y. Zhang, J.P. Davis, and R.L. Van Etten, Covalent modification and active site-directed inactivation of a low molecular weight phosphotyrosyl protein phosphatase, Biochemistry 31:1701 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Y.-Y.P. Wo, M.-M. Zhou, P. Stevis, J.P. Davis, Z.-Y. Zhong, and R.L. Van Etten, Cloning, expression, and catalytic mechanism of the low molecular weight phosphotyrosyl protein phosphatase from bovine heart, Biochemistry 31:1712 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. B.J. Stockman, A.M. Krezel, J.M. Markley, K.G. Leonhardt, and N.A. Strauss, Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactionsBiochemistry 29:9600 (1990).

    CAS  Google Scholar 

  12. A.M. Stock, E. Martinez-Hackert, B.F. Rasmussen, A.M. West, J.B. Stock, D. Ringe, and G.A. Petsko, Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis, Biochemistry 32:13375 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. D. Barford, A.J. Flint, and N.K. Tonks, Crystal structure of human protein tyrosine phosphatase IB, Science 263:1397 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. J.A. Stuckey, H.L. Schubert, E.B. Fauman, Z.-Y. Zhang, J.E. Dixon, and M.A. Saper, Crystal structure of Yersinia protein tyrosine phosphatase at 2.5Ã… and the complex with tungstate, Nature 370:571 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. M. Zhang, R.L. Van Etten, and C.V. Stauffacher, Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2-Ã… resolution, Biochemistry 33:11097 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. X.-D. Su, N. Taddei, M. Stefani, G. Ramponi, and P. Nordlund, The crystal structure of a low-molecular- weight phosphotyrosine protein phosphatase, Nature 370:575 (1994).

    Article  PubMed  CAS  Google Scholar 

  17. M. Tyers, RJ Haslam RA Rachubinski, and CB Harley, Molecular analysis of pleckstrin: the major protein kinase C substrate of platelets.Nature 333:470 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. B.J. Mayer, R. Ren, K.L. Clark, and D. Baltimore, A putative modular domain present in diverse signaling proteins [letter], Cell 73:629 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. R.J. Haslam, H.B. Koide, and B.A. Hemmings, Pleckstrin domain homology, Nature 363:309 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. A. Musacchio, T. Gibson, P. Rice, J. Thompson, and M. Saraste, The PH domain: a common piece in the structural patchwork of signalling proteins, TIBS 18:343 (1993).

    PubMed  CAS  Google Scholar 

  21. G. Shaw, Identification of novel pleckstrin homology (PH) domains provides a hypothesis for PH domain function, Biochem. Biophys. Res. Comm. 195:1145 (1993).

    CAS  Google Scholar 

  22. H.S. Yoon, P.J. Hajduk, A.M. Petros, E.T. Olejniczak, R.P. Meadows, and S.W. Fesik, Solution structure of a pleckstrin-homology domain, Nature 369:672 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. M.J. Macias, A. Musacchio, H. Ponstingl, M. Nilges, M. Saraste, and H. Oschkinat, Structure of the pleckstrin homology domain from β-spectrin, Nature 369:675 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. K.M. Ferguson, M.A. Lemmon, J. Schlessinger, and P.B. Sigler, Crystal structure at 2.2 Ã… resolution of the pleckstrin homology domain from human dynamin, Cell 79:199 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. A.K. Downing, P.C. Driscoll, I. Gout, K. Salim, M.J. Zvelebil, and M.D. Waterfield, Three-dimensional solution structure of the pleckstrin homology domain from dynamin, Curr. Biol. 4:884 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. D. Timm, K. Salim, I. Gout, L. Guruprasad, M. Waterfield, and T. Blundell, Crystal structure of the pleckstrin homology domain from dynamin, Nature Stuct. Biol. 1:782 (1994).

    Article  CAS  Google Scholar 

  27. D. Fushman, S. Cahill, M.A. Lemmon, J. Schlessinger, and D. Cowburn, Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy, Proc. Natl. Acad. Sci. USA 92:816(1995).

    Article  PubMed  CAS  Google Scholar 

  28. M.E. Newcomer, T.A. Jones, J. Aqvist, J. Sundelin, U. Eriksson, L. Rask, and P.A. Peterson, The three-dimensional structure of retinol-binding protein, EMBO J. 3:1451 (1984).

    PubMed  CAS  Google Scholar 

  29. J.E. Harlan, P.J. Hajduk, H.S. Yoon, and S.W. Fesik, Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate, Nature 371:168 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. L.H. Davis and V. Bennett, Indentification of two regions of βG-Spectrin that bind to distinct sites in brain membranes, J. Biol. Chem. 269:4409 (1994).

    PubMed  CAS  Google Scholar 

  31. M. Rebecchi, A. Peterson, and S. McLaughlin, Phosphoinositide-specific phospholipase C-delta 1 binds with high to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31:12742(1992).

    Article  PubMed  CAS  Google Scholar 

  32. H. Mano, K. Mano, B. Tang, M. Koehler, T. Yi, D.J. Gilbert, N.A. Jenkins, N.G. Copeland, and J.N. Ihle, Expression of a novel form of Tec kinase in hematopoietic cells and mapping of the gene to chromosome 5 near Kit, Oncogene 8:417 (1993).

    PubMed  CAS  Google Scholar 

  33. S. Gibson, B. Leung, J.A. Squire, M. Hill, N. Arima, P. Goss, D. Hogg, and G.B. Mills, Identification, cloning, and characterization of a novel human T-cell-specific tyrosine kinase located at the hematopoietin complex on chromosome 5q, Blood 5:1561 (1993).

    Google Scholar 

  34. D.J. Rawlings, D.C. Saffran, S. Tsukada, D.A. Largaespada, J.C. Grimaldi, L. Cohen, R.N. Mohr, J.F. Bazan, M. Howard, and N.G. Copeland, Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice, Science 261:358 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. J.A. Pitcher, J. Inglese, J.B. Higguns, J.L. Arriza, P.J. Casey, C. Kim, J.L. Benovic, M.M. Kwantra, M.G. Caron, and R.J. Lefkowitz, Role of βγ Subunits in targeting the β-adrenergic receptor kinase to membrane-bound receptors, Science, 257:1264 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. J.A. Pitcher, K. Touhara, E.S. Payne, and R.J. Lefkowitz, Pleckstrin homology domain-mediated membrane association and activation of the β-adrenergic receptor kinase requires coordinate interaction with Gβγ subunits and lipid, J. Biol. Chem. 270:11707 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. F.D. Karim, F.D. Urness, L.S. Thummel, M.J. Llemsz, S.R. McKercher, A. Celada, C. Van Beveren, R.A. Maki, C.V. Gunther, J.A. Nye, and B.J. Graves, The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence, Genes & Dev. 4:1451 (1990).

    Article  CAS  Google Scholar 

  38. B. Wasylyk, S.L. Hahn, and A. Giovane, The ets family of transcription factors, Eur. J. Biochem. 211:7 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. E.W. Scott, M.C. Simon, H. Anastasi, and H. Singh, Requirement of transcription factor PU. l in the development of multiple hematopoietic lineages, Science 265:1573 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. A. Klaes, T.S. Menne, H. Scholz, and C. Klämbt, The ets transcription factors encoded by Drosophila gene pointed direct glial cell differentiation in the embryonic CNS, Cell 78:149 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. E.M. O’Neill, I. Rebay, R. Tjian, and G.M. Rubin, The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the ras/MAPK pathway, Cell 78:137 (1994).

    Article  PubMed  Google Scholar 

  42. J.M. Leiden and C.B. Thompson, Transcriptional regulation of T-cell genes during T-cell development, Curr. Opin. Immunol. 6: 231 (1994).

    Article  PubMed  CAS  Google Scholar 

  43. D. Leprince, A. Gegonne, J. Coll, C. de Taisne, A. Schneeberger, C. Lagron, and D. Stehelin, A putative second cell-derived oncogene of the avian leukemia retrovirus E26, Nature 306:395 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. F. Moreau-Gachelin, A. Tavitian, and P. Tambourin, Spi-1 is a putative oncogene in virally induced murine erythroleukaemias, Nature 331:277 (1988).

    Article  PubMed  CAS  Google Scholar 

  45. Y. Ben-David, E.B. Giddens, K. Letwin, and A. Bernstein, Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c- ets-1, Genes & Dev. 5:908 (1991).

    Article  CAS  Google Scholar 

  46. O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot, M. Peter, H. Kovar, I. Joubert, P. de Jong, G. Rouleau, A. Aurias, and G. Thomas, Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature 359:162 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. J. Zucman, T. Melot, C. Desmaze, J. Ghysdael, B. Plougastel, M. Peter, J.M. Zucker, T.J. Triche, D. Sheer, and C. Turc-carel, Combinatorial generation of variable fusion proteins in the Ewing family of tumours, EMBO J. 12:4481 (1993).

    PubMed  CAS  Google Scholar 

  48. W.A. May, M.L. Gishizky, S.L. Lessnick, L.B. Lunsford, B.C. Lewis, O. Delattre, J. Zucman, G. Thomas, and C.T. Denny, Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by Fli-1 for transformation, Proc. Natl. Acad. Sei. U.S.A. 90:5752 (1993).

    Article  CAS  Google Scholar 

  49. H. Liang, X. Mao, E.T. Olejniczak, D.G. Nettesheim, L. Yu, R.P. Meadows, C.B. Thompson, and S.W. Fesik, Solution structure of the ets domain of Fli-1 when bound to DNA, Nature Struct. Biol. 1:871 (1994).

    Article  PubMed  CAS  Google Scholar 

  50. X. Mao, S. Miesfeldt, H. Yang, J.M. Leiden, and C.B. Thompson, The Fli-1 and chemimeric EWS-Fli-1 oncoproteins display similar DNA binding specifities, J. Biol. Chem. 269:18216 (1994).

    PubMed  CAS  Google Scholar 

  51. H. Liang, E.T. Olejniczak, X. Mao, D.G. Nettesheim, L. Yu, C.B. Thompson, and S.W. Fesik, The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-binding motif of the Escherichia coli catabolite gene activator protein, Proc. Natl. Acad. Sei. USA 91:11655 (1994).

    Article  CAS  Google Scholar 

  52. C.O. Pabo and R.T. Sauer, Transcription factors: structural families and principles of DNA recognition, Annu. Rev. Biochem. 61:1053 (1992).

    Article  PubMed  CAS  Google Scholar 

  53. S.C. Schultz, G.C. Shields, and T.A. Steitz, Crystal structure and CAP-DNA Complex: the DNA is bent by 90°, Science 253:1001 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. K.P. Wilson, L.M. Shewchuk, R.G. Brennan, A.J. Otsuka, and B.W. Matthews, The E. coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin and DNA-binding domains, Proc. Natl. Acad. Sei. U.S.A. 89:9257 (1992).

    Article  CAS  Google Scholar 

  55. V. Ramakrishnan, J.T. Finch, V. Graziano, P.L. Lee, and R.M. Sweet, Crystal structure of globular domain of histone H5 and its implications for nucleosome binding, Nature 362:219 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. K.L. Clark, E.D. Halay, E. Lai, and S.K. Burley, Cocrystal structure of the HNF-3/forkhead DNA-recognition motif resembles histone H5, Nature 364:412 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. C.J. Harrison, A.A. Bohm, and H.C.M. Nelson, Crystal structure of DNA binding domain of the heat shock transcription factor, Science 263:224 (1994).

    Article  PubMed  CAS  Google Scholar 

  58. J.A. Nye, J.M. Petersen, C.V. Gunther, M.D. Jonsen, and B.J. Graves, Interaction of murin Ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif, Genes Develop. 6:975 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Discussion

David Cistola - I was particularly intrigued with the pleckstrin homology domain work where you mentioned that the overall topology of the pH domain was a ß-barrel-like protein that resembled serum-retinol binding protein and that family of lipid binding proteins. Of course in those proteins, the lipid binding is in the interior between the two ß-sheets and is usually a single acyl chain or something equivalent to a single acyl chain. I am wondering in the pleckstrin homology domain whether you considered the possibility that phospholipids with a single acyl chain might be able to bind with the acyl chain inside of the ß-barrel such as lysophosphotidylcholine and perhaps acyl coenzyme A. Have you screened those lipids as well?

Fesik - We didn’t screen those that you mentioned. However, at first we thought that pH domains may be binding to farnesol or a single lipid, since many proteins that contain pleckstrin homology domains are involved in regulating RAS. For isoprenyl or farnesyl derivatives, however, we didn’t see any binding. It is important to note differences between retinol binding proteins and pH domains. If you look at the apo form of retinol binding protein, there’s a cavity lined with waters. This is a hydrophobic cavity where the lipid binds. If you look at the structure of the pleckstrin homology domain, that cavity is not preformed. The interior of the protein has a nice hydrophobic packing arrangement. Nonetheless, it is possible that a lipid molecule binds in that cavity. However, the experimental evidence to date suggests that the interaction between pH domains and PIP2 consists primarily of a charge-charge interaction and that the fatty acid portion of the lipid or fatty acids in general don’t greatly contribute to the binding to the pleckstrin homology domains.

Cistola - Thank you.

David Gorenstein - Have you considered that the arginines of Fli-1 are binding to the phosphates? If you looked in your model of the Fli-1/DNA complex, are they far enough away? Is it the dynamics of the phosphates and the arginines that’s causing the broadening or something else?

Fesik - In the future, we plan to investigate that further. Today, we can say that we observe the broadening. However, at the present time, we are unsure what is contributing to the line broadening. Since it’s a tight complex, you wouldn’t think that it is exchange broadening. What we think is going on is that the arginine might be experiencing more than one state and that the motion is on the order of the chemical shift difference between these two states. Now this has been observed before by Kurt Wüthrich in other systems and during this meeting we’ve heard other examples where this sort of phenomena could be occurring. For example, Julie Forman-Kay spoke about SH2/phosphopeptide interactions that may be a related phenomenon in which an arginine is experiencing two states and that the motion is of the order of chemical shift difference between the two states.

Gorenstein - We’ve seen that as well in some proteins both from modeling and from phosphorus NMR. I think it is very important. This may be an important component of recognition certainly that the dynamics of the arginine is matching some of the dynamics of the backbone.

Fesik - It may not be as the crystal structures would have you believe in which the side chains were all defined in one location in protein/DNA complexes. In contrast, there might be mobility. In future studies, we plan to try a lot of different sample conditions in an attempt to pin down what’s going on with this Fli-1/DNA complex, especially in regards to the recognition helix containing the two arginines that are required for binding to DNA.

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Fesik, S.W. et al. (1996). NMR Structures of Proteins Involved in Signal Transduction. In: Rao, B.D.N., Kemple, M.D. (eds) NMR as a Structural Tool for Macromolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0387-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0387-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8029-0

  • Online ISBN: 978-1-4613-0387-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics