Skip to main content

Dislocation Patterns: Experiment, Theory and Simulation

  • Chapter
Stability of Materials

Part of the book series: NATO ASI Series ((NSSB,volume 355))

Abstract

Dislocations are the elementary carriers of plastic flow. It follows that understanding the mechanical properties of crystalline solids involves the knowledge of the basic properties of dislocations, of their dynamics and of their interactions with various types of obstacles. Among the latter, the most troublesome are dislocation themselves, as the mutual interactions of dislocations are both short and long ranged. When dislocation-dislocation interactions are predominant, the flow properties of a material depend on individual as well as collective dislocation properties in a complex manner which is still not well understood. The most striking feature is, then, the spontaneous formation of organized patterns consisting of alternating dislocation-rich and dislocation poor regions (e.g., cells, subgrains, veins or walls, channels…). These microstructures exhibit more or less well-defined periodicities, usually in the micrometer range. Such collective phenomena are relatively unimportant at small strains, since the total dislocation density is small. They may, however, play a prominent role on flow properties as soon as the total dislocation density stored in the deforming crystal reaches a critical value. It follows that investigations on dislocation patterning are important in two respects, -i) as an example of self-organization in a dynamical system and -ii) as a necessary intermediate step in the view of developing more physical approaches of plasticity, based on dislocation theory. For an extensive review of these questions, see Kubin (1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E.C. Aifantis, 1986, On the dynamical origin of dislocation patterns, Mat. Sci. Eng. 81:563.

    Article  Google Scholar 

  • E.C. Aifantis, 1987, On the heterogeneity of plastic deformation, in: Constitutive relations and their physical bases (Proc. 8th Risø Symposium), p. 205, S.I. Anderson et al., eds., RisøNaĂš. Lab., Dk-Roskilde.

    Google Scholar 

  • E.C. Aifantis, 1988, On the gradient approach to deformation patterning and fracture, Solid State Phenomena 3&4:355.

    Google Scholar 

  • E.C. Aifantis, 1990, Nonlinearity and selforganization inplasticity and fracture, in: Patterns, Defects and Materials Instabilities, p. 221, D. Walgraef and N.M. Ghoniem, eds., Kluwer Acad. Pubi., N-Dordrecht.

    Google Scholar 

  • RJ. Amodeo, 1988, Doctoral dissertation, University of California, Los Angeles.

    Google Scholar 

  • R J. Amodeo and N.M. Ghoniem, 1990a, Dislocation dynamics, I. A proposed methodology for deformation mechanisms, Phys. Rev. B 41:6958

    ADS  Google Scholar 

  • RJ. Amodeo and N.M. Ghoniem, 1990b, Dislocation dynamics, II, Phys. Rev. B 41:6968.

    Article  ADS  Google Scholar 

  • DJ. Bacon, 1967, A method for describing a flexible dislocation, Phys. Stat. Sol. 23:527.

    Article  ADS  Google Scholar 

  • DJ. Bacon, U.F. Kocks and R.O. Scattergood, 1973, The effect of dislocation self-interaction on the Orowan stress, Phil. Mag. 28:1241.

    Article  ADS  Google Scholar 

  • S J. Basinski and Z.S. Basinski, 1979, Plastic deformation and work hardening, in: Dislocations in Solids, Vol. 4, p. 263, F.R.N. Nabarro, ed., North-Holland, Amsterdam.

    Google Scholar 

  • J. Bonneville, B. Escaig and J.L. Martin, 1988, A study of cross-slip activation parameters in pure copper, Acta metall. 36: 1989.

    Article  Google Scholar 

  • L.M. Brown, 1964, Phil. Mag. 10:441.

    MATH  Google Scholar 

  • Y. BrĂ©chet, G. R. Canova and L.P. Kubin, 1993, Static versus propagative plastic strain localizations, Scripta metall. mater 29:1165.

    Article  Google Scholar 

  • G. Canova, L.P. Kubin and Y. Brechet, 1993, Glide softening in alloys: a simulation, in Large Plastic Deformations, p. 27, C. Teodosiu et al. (Eds.), A.A. Balkema, Rotterdam.

    Google Scholar 

  • B. Devincre , 1993, Doctoral Thesis N° 2838 (in French), University of Paris-Sud (Orsay).

    Google Scholar 

  • B. Devincre and M. Condat, 1992, Model validation of a 3D simulation of dislocation dynamics: discretization and line tension effects, Acta metall. mater. 40:2629.

    Article  Google Scholar 

  • B. Devincre and LP. Kubin, 1994, Simulations of forest interactions and strain hardening in FCC crystals, Modelling Simul. Mater. Sci. Eng. 2:559.

    Google Scholar 

  • B. Devincre and V. Pontikis, 1993, Computer modelling of dynamically-induced dislocation patterning, in Mater. Res. Symp. Proc., Materials Research Society, Pittsburgh.

    Google Scholar 

  • B. Devincre and S. Roberts, 1995,3-D simulation of dislocation crack interactions at the mesoscopic scale, in Computer Simulations in Materials Science, L.P. Kubin etal. (eds.), Kluwer Acad. Pubi., N-Dordrecht, in press.

    Google Scholar 

  • K. Differt and U. Essmann, 1993, Dynamical model of the wall structure of persistent slip bands of fatigued metals. I: dynamical model for edge dislocation walls, Mat. Sci. Eng. A164:295.

    Google Scholar 

  • M.S. Duesbery and K. Sadananda, 1991, The numerical simulation of continuum dislocations, Phil. Mag. A 63:535.

    Article  ADS  Google Scholar 

  • M.S. Duesbery, N.P. Louat and K. Sanandana, 1992, The interaction of dislocations with coherent inclusions I. Perfect edge and screw dislocations, Phil. Mag. A 65:311.

    ADS  Google Scholar 

  • M.S. Duesbery, N.P. Louat and K. Sanandana, 1992, The mechanics and energetics of cross-slip, Acta metall. mater. 40:149.

    Article  Google Scholar 

  • B. Escaig, 1968, Sur le glissement dĂ©viĂ© des dislocations dans la structure cubique Ă  faces centrĂ©es, J. de Physique 29:225.

    Article  Google Scholar 

  • U. Essmann and K. Differt, 1988, The nature of the wall structure in persistent slip bands of fatigued metals, Scripta metall. 22:1337.

    Article  Google Scholar 

  • U. Essmann and K. Differt, 1995, Dynamical model of the wall structure in persistent slip bands of fatigued metals II. The wall spacing and the temperature dependence of the yield stress in saturation, Mat. Sci. Eng.submitted.

    Google Scholar 

  • U. Essmann and H. Mughrabi, 1979, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Phil. Mag. A 40:731.

    Article  ADS  Google Scholar 

  • X.F. Fang , J. Hagedorn and W. Dahl, 1991, Computer simulation of dynamic dislocation organization and the strain hardening in metals, inStrength of Metals and Alloys (Proc. ICSMA 9), D.G. Brandon, R. Chaim and A. Rosen, eds., Freund Pubi. House, London.

    Google Scholar 

  • X.F. Fang and W. Dahl, 1993, Investigation of the formation of dislocation cell structure and the strain hardening of metals by computer simulation, Mat. Sci. Eng. A164:300.

    Google Scholar 

  • A.J.E. Foreman, 1967, The bowing of a dislocation segment, Phil. Mag. 15:1011.

    Article  ADS  Google Scholar 

  • A.J.E. Foreman and M.J. Makin, 1966, Dislocation movement through random arrays of obstacles, Phil. Mag. 14:911.

    Article  ADS  Google Scholar 

  • R. Fournet, 1994, Doctoral thesis (in French), UniversitĂ© de Bourgogne.

    Google Scholar 

  • R. Fournet and J.M. Salazar, 1995, Computer simulation on dislocation patterning, Solid State Phenomena 42&43:205.

    Article  Google Scholar 

  • J. Friedel, 1967, “Dislocations”, Pergamon Press, Oxford.

    Google Scholar 

  • Franek, R. Kalus and J. Kratochvil, 1991, Model of early stage of dislocation structure formation in cyclically deformed metal crystals, Phil. Mag. 64:497.

    Article  Google Scholar 

  • N.M. Ghoniem and R.J. Amodeo, 1988, Computer simulation of dislocation pattern formation, Solid State Phenomena 3&4:377.

    Article  Google Scholar 

  • N.M. Ghoniem and R.J. Amodeo, 1990, Numerical Simulation of dislocation patterns during plastic deformation, inPatterns, Defects and Materials Instabilities, p. 303, D. Walgraef and N.M. Ghoniem, eds., Kluwer, NL-Dordrecht.

    Google Scholar 

  • E. van der Giessen and A. Needleman, 1994, On the solution of two-dimensional plasticity problems with discrete dislocations, in Computational Material Modelling, AD-Vol. 42/PVP-Vol. 294, p. 53, ASME.

    Google Scholar 

  • E. van der Giessen and A. Needleman, 1995, Discrete dislocation plasticity: a simple planar model, Modelling Simul. Mater. Sci. Eng. in press.

    Google Scholar 

  • J. Gil Sevillano, 1993, Flow stress and work hardening, in: Treatise in Materials Science and Technology, Vol. 6, p. 19, H. Mughrabi, ed., VCH, D-Weinberg.

    Google Scholar 

  • J. Gil Sevillano, E. Bouchaud and L.P. Kubin, 1991, Scripta metall. mater.25:355.

    Article  Google Scholar 

  • Groma and G.S. Paw ley, 1993a, Role of the secondary slip system in a computer simulation model of the plastic behaviour of single crystals, Mat. Sci. Eng.A 164:306.

    Google Scholar 

  • Groma and G.S. Pawley, 1993b, Computer simulation of plastic behaviour of single crystals, Phil. Mag. A, 67:1459.

    Article  ADS  Google Scholar 

  • A.N. Gulluoglu, D.J. Srolovitz, R. LeSar and P.S. Lomdahl, 1989, Dislocation distributions in two dimensions, Scripta met. 23:1347.

    Article  Google Scholar 

  • A.N. Gulluoglu, DJ. Srolovitz, R. LeSar and P.S. Lomdahl, 1990, Dynamical simulation of dislocation microstructure, in Simulation and theory of evolving microstructures, M.P. Anderson, A.D. Rollet, eds., TMS, Warrendale (PA).

    Google Scholar 

  • A.N. Gulluoglu and CS. Hartley, 1992, Simulation of dislocation microstructures in two dimensions: I. Relaxed structures, Modelling Simul. Mater. Sci. Eng. 1:1.

    Article  ADS  Google Scholar 

  • A.N. Gulluoglu and CS. Hartley, 1993, Simulation of dislocation microstructures in two dimensions: II. Dynamic and relaxed structures, Modelling Simul. Mater. Sci. Eng.1:383.

    Article  ADS  Google Scholar 

  • P. Hähner, 1995, Habilitation dissertation (in English), University of Lille I.

    Google Scholar 

  • F. Hernandez Olivares and J. Gil Sevillano, 1987, A quantitative assessment of forest-hardening in F.C.C. metals, Acta metall. 35:631.

    Article  Google Scholar 

  • H.W. Hesselbarth and E. Steck, 1992, A simulation of dislocation patterning derived from cellular automata, Solid State Phenomena 23&24:445.

    Article  Google Scholar 

  • P.B. Hirsch , 1975, “The Physics of Materials”, Vol. 2, p. 189, Cambridge University Press.

    Google Scholar 

  • D.L. Holt, 1970, Dislocation cell formation in metals, J. Appl. Phys. 41: 3197.

    Article  ADS  Google Scholar 

  • D. D’Humières and P. Lallemand, 1986, Lattice gas automata for fluid mechanics, Physica140 A:326.

    Google Scholar 

  • H.O.K. Kirchner , 1984, The concept of line tension: theory and experiment, in: “Dislocations 1984”, p. 53., P. Veyssière, L. Kubin and J. Castaing, eds., Editions du CNRS, Paris.

    Google Scholar 

  • U.F. Kocks, 1966, A statistical theory of flow stress and work-hardening, Phil. Mag. 13:541.

    Article  ADS  Google Scholar 

  • U.F. Kocks, 1976, Laws for work-hardening and low temperature creep, J. Eng. Mat. and Technology 98:76.

    Article  Google Scholar 

  • U.F. Kocks , 1985, Dislocation interactions, flow stress and work-hardening, in: “Dislocations and properties of real materials”, p. 125, The Institute of Metals, London.

    Google Scholar 

  • U.F. Kocks, A.S. Argon and M.F. Ashby, 1975,“Thermodynamics and Kinetics of Slip”, Progress in Materials Science, Vol. 19, B. Chalmers, J.W. Christian and T.B. Massalski, eds., Pergamon Press, Oxford.

    Google Scholar 

  • J. Kratochvil, 1988a, Dislocation pattern formation in metals, Rev. Phys. Appl. 23:419.

    Google Scholar 

  • J. Kratochvil, 1988b, Dislocation structure instability and fatigue, in: Basic Mechanisms of Fatigue in Metals, p. 15, P. Lukas and J. Pollack, eds. Academia, Prague.

    Google Scholar 

  • J. Kratochvil, 1989, Stability approach to problem of work hardening in metals, Rev. Def. Behav. of Metals 2:353.

    Google Scholar 

  • J. Kratochvil, 1994, Continuum mechanics approach to collective behaviour of dislocations, Solid State Phenomena 35–36:71.

    Google Scholar 

  • J. Kratochvil and S. Libovicky, 1986, Dipole drift mechanism of early stages of dislocation pattern formation in deformed metal single crystals, Scripta metall. 20:1625.

    Article  Google Scholar 

  • J. Kratochvil and A. Orlova, 1990, Instability origin of dislocation structure, Phil. Mag. 61:281.

    Google Scholar 

  • J. Kratochvil and M. Saxlova, 1992a, Sweeping mechanism of dislocation pattern formation, Scripta metall. mater. 26:113.

    Article  Google Scholar 

  • J. Kratochvil and M. Saxlova, 1992b, A model of formation of dipolar dislocation strcutures, Solid State Phenomena 23&24:369.

    Article  Google Scholar 

  • L.P. Kubin, 1995, Strain and strain rate softening instabilities: length scales and spatial couplings, in: Plasticity of Metals and Alloys (ISPMA 6), p. 219, P. Lukac ed., Trans Tech Publications, CH-Aedermannsdorf.

    Google Scholar 

  • L.P. Kubin, 1993, Dislocation patterning during multiple slip of fee crystals: a simulation approach, Phys. Status Solidi(a) 135: 433.

    ADS  Google Scholar 

  • L.P. Kubin, 1993, Dislocation patterning, in: Treatise in Materials Science and Technology, Vol. 6, p. 138, H. Mughrabi, ed., VCH, D-Weinberg.

    Google Scholar 

  • L.P. Kubin and J. LĂ©pinoux, 1988, The dynamic organization of dislocation structures, inStrength of Metals and Alloys (Proc. ICSMA 8), Vol. 2, p. 35, P.O. Kettunen et al, eds., Pergamon Press, Oxford.

    Google Scholar 

  • L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis and Y. Brechet, 1992, Dislocation structures and plastic flow: a 3-D simulation, Solid State Phenomena 23&24,455 (1992).

    Article  Google Scholar 

  • D. Kuhlmann-Wisldorf, 1989, Theory of plastic deformation: - properties of low energy dislocation structures, Mat. Sci. Eng. A 113: 1.

    Article  Google Scholar 

  • D. Kuhlmann-Wilsdorf, 1992, Fundamentals of cell and subgrain structures in historical perspective, Scripta metall. mater. 27: 951.

    Article  Google Scholar 

  • J. LĂ©pinoux, 1987, Doctoral Thesis N°456 (in French), University of Poitiers.

    Google Scholar 

  • J. LĂ©pinoux and L.P. Kubin, 1987, The dynamic organization of dislocations: a simulation, Scripta met. 21:833.

    Article  Google Scholar 

  • J. LĂ©pinoux, 1988, Simulation of the dynamic organization of dislocation microstructures, Solid State Phenomena, 3&4:389.

    Article  Google Scholar 

  • J. LĂ©pinoux, 1995, Application of cellular automata in materials science, in “Computer Simulations in Materials Science”, L.P. Kubin etal. (eds.), Kluwer Acad. Pubi., N-Dordrecht, in press.

    Google Scholar 

  • B.M. Loginov, 1991, The role of forest dislocation flexibility properties in the process of crystal work hardening, Phys. Stat. Sol. (a) 125:481.

    Article  ADS  Google Scholar 

  • M. Mareshal, 1995, Cellular automata: a review, 1995, in “Computer Simulations in Materials Science”, L.P. Kubin etal. (eds.), Kluwer Acad. Pubi., N-Dordrecht, in press.

    Google Scholar 

  • M.J. Mills and D.C. Chrzan, 1992, Dynamical simulation of dislocation motion in LI2 alloys, Acta metall. mater. 40:3051.

    Article  Google Scholar 

  • M.J. Mills, D.C. Chrzan and D.B. Miracle, 1994, Influence of dislocation fine structure on the strength and flow behavior of ordered intermetallic compounds, in: Strength of Materials (Proc. ICSMA 10), p 41, H. Oikawa et al., eds., The Japan Institute of Metals.

    Google Scholar 

  • C. Misbah, 1988, Dynamics of nonequilibrium systems in the weakly nonlinear regime, Solid State Phenomena 3&4:29.

    Article  Google Scholar 

  • H. Mughrabi, 1973, in Proc. ICSMA 3, Vol. 1, The Institute of Metals, Cambridge, p. 407.

    Google Scholar 

  • H. Mughrabi, 1979, Microscopic mechanisms of metal fatigue, inStrength of Metals and Alloys (Proc. ICSMA 5), Vol. 3, p. 1615, P. Haasen, V. Gerold and G. Kostorz, eds., Pergamon Press, Oxford.

    Google Scholar 

  • H. Mughrabi, 1987, A two-parameter description of heterogeneous dislocation distribution in deformed metal crystals, Mat. Sci. Eng. 85: 15.

    Article  Google Scholar 

  • R. Neuhaus and Ch. Schwink, 1992, On the flow stress of [100]and [111]-oriented Cu-Mn single crystals, Phil. Mag. A 65: 1463.

    Article  ADS  Google Scholar 

  • P. Neumann, 1986, Low energy dislocation configurations: a possible key to the understanding of fatigue, Mat. Sci. Eng. 81:465.

    Article  Google Scholar 

  • A.A. Predvoditelev and B.M. Loginov, 1972, Laws of passage of slipping dislocations through flexible and reacting dislocation ensembles, Sov. Phys. Crystallogr. 30:433.

    Google Scholar 

  • A.A. Predvoditelev and G.I. Nichugovskii, 1972, A model for dislocation motion through a dislocation forest, Sov. Phys. Crystallogr. 17:132.

    Google Scholar 

  • Th. Pretorius and D. Rönnpagel, 1994, Dislocation motion in Ni-basis superalloys, a quantitative comparison between simulation calculations, TEM observations and bulk measurements, in: Strength of Materials (Proc. ICSMA 10), p 689, H. Oikawa et al., eds., The Japan Institute of Metals.

    Google Scholar 

  • S.V. Raj and G.M. Pharr, 1986, A compilation and analysis of data for the stress dependence of the subgrain size, Mat. Sci. Eng. 81:217.

    Article  Google Scholar 

  • A.D. Rollett and U.F. Kocks, 1994, A review of the stages of work hardening, Solid State Phenomena 35–36, 1.

    Google Scholar 

  • D. Rönnpagel and V. Mohles, 1994, Simulation calculations of solid solution hardening, in: Strength of Materials (Proc. ICSMA 10), p 137, H. Oikawa et al., eds., The Japan Institute of Metals.

    Google Scholar 

  • J.M. Salazar, R. Fournet and N. Banai, 1995, Dislocation patterns from reaction-diffusion models, Acta metall. mater. 43:1127.

    Article  Google Scholar 

  • C. Schiller and D. Walgraef, 1988, Numerical simulation of persistent slip band formation, Acta met. 36:563.

    Article  Google Scholar 

  • Seeger, 1955, Phil. Mag. 46:1194.

    Google Scholar 

  • Seeger, 1988, Thermodynamics of open systems, self-organization and crystal plasticity, inStrength of Metals and Alloys (Proc. ICSMA 8), p. 463, P.O. Kettunen et al, eds., Pergamon Press, Oxford.

    Google Scholar 

  • G. Schoeck and R. Frydman, 1972, The contribution of dislocation forest to the flow stress, Phys. Stat. Sol. (b) 53:661.

    ADS  Google Scholar 

  • A.A. Shtolberg, 1971, A method for computation of equilibrium dislocation configurations, Phys. Stat. Sol.(b) 43:523

    ADS  Google Scholar 

  • S. Suresh, 1993, Cyclic deformation and fatigue, in: Treatise in Materials Science and Technology, Vol. 6, p. 509, H. Mughrabi, ed., VCH, D-Weinberg.

    Google Scholar 

  • O.G. Tyupkina, 1992, Dislocation ensemble movement through random arrays of obstacles, Phil. Mag. 65:111.

    Article  Google Scholar 

  • D. Walgraef, 1986, Reaction diffusion equations: an application to the formation of dislocation patterns, in: Mechanical properties and behaviour of solids: plastic instabilities, p. 354, V. Balakrishnan and C.E. Bottani, eds., World Scientific, Singapore.

    Google Scholar 

  • D. Walgraef, 1988, Instabilities and patterns in reaction-diffusion dynamics, Solid State Phenomena, 3&4:77.

    Article  Google Scholar 

  • D. Walgraef, 1990, Kinetic models for defect populations in driven materials, in:Patterns, Defects and Materials Instabilities, p. 73, D. Walgraef and N.M. Ghoniem, eds., Kluwer Acad. Pubi, N-Dordrecht.

    Google Scholar 

  • D. Walgraef and E.C. Aifantis, 1985, Dislocation patterning in fatigued metals as a result of dynamical instabilities, J. Appl Phys., 58:688.

    Article  ADS  Google Scholar 

  • D. Walgraef, C. Schiller and E.C. Aifantis, 1987, Reaction-diffusion approach to dislocation patterns, in:Patterns, Defects and Microstructures in Nonequilibrium Systems, p. 257, D. Walgref, ed., Martinus Nijhoff Pubi., NL-Dordrecht.

    Google Scholar 

  • H.Y. Wang and R. LeSar, 1995, 0(N) algorithm for dislocation dynamics, Phil. Mag. 71:149.

    Article  Google Scholar 

  • S. Wolfram, 1984, Computation theory of cellular automata, Commun. Math. Phys. 96:15.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Kubin, L.P. (1996). Dislocation Patterns: Experiment, Theory and Simulation. In: Gonis, A., Turchi, P.E.A., KudrnovskĂ˝, J. (eds) Stability of Materials. NATO ASI Series, vol 355. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0385-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0385-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8028-3

  • Online ISBN: 978-1-4613-0385-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics