Skip to main content

On the Role of Non—Pair Potential Terms in Semiempirical Quantum—Mechanical Simulations

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 355))

Abstract

One of the recent trends in condensed matter physics and materials science is to develop simplified schemes for computer modelling of low-symmetry atomic configurations. These schemes are based on quantum-mechanical treatment of electronic structure in solids and it is expected that they will be much faster than ab initio methods but comparable in accuracy. The underlying motivation is the necessity to be able to describe properly more and more complex systems used in contemporary science and technology. For example, extended lattice defects such as grain boundaries or other interfaces, dislocations etc. control to a great extent mechanical, electrical and transformational properties of both naturally occuring polycrystalline materials and man-made composites. However, for a deeper understanding of their role we need to know more about the structure of such defects, their mobility and other characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. W. Finnis and J. E. Sinclair, Phil. Mag. A 50, 45 (1984).

    Article  ADS  Google Scholar 

  2. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  ADS  Google Scholar 

  3. J. A. Moriarty, Phys. Rev. B 42, 1609 (1990).

    Article  ADS  Google Scholar 

  4. A. E. Carlsson, P. A. Fedders, and C. W. Myles, Phys. Rev. 41, 1247 (1990).

    ADS  Google Scholar 

  5. J. D. Kress and A. F. Voter, Phys. Rev. B 43, 12607 (1991).

    Article  ADS  Google Scholar 

  6. D. G. Pettifor and M. Aoki, in Structural and Phase Stability in Alloys, edited by J L Moran-Lopez and J M Sanches (Plenum Press, New York, 1992), p. 119.

    Google Scholar 

  7. S. M. Foiles, Phys. Rev. B 48, 4287 (1993).

    Article  ADS  Google Scholar 

  8. W. A. Harrison, Electronic Structure and the Properties of Solids (Dover Publ., New York, 1989).

    Google Scholar 

  9. R. E. Cohen, M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 50, 14694 (1994).

    Article  ADS  Google Scholar 

  10. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1964).

    Article  MathSciNet  Google Scholar 

  12. W. M. C. Foulkes and R. Haydock, Phys. Rev. B 39, 12520 (1989).

    Article  ADS  Google Scholar 

  13. A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, J Phys. C: Solid State Phys. 21, 35 (1988).

    Article  ADS  Google Scholar 

  14. L. Kleinman, Phys. Rev. B 24, 7412 (1981).

    Article  ADS  Google Scholar 

  15. W. R. L. Lambrecht, B. Segall, and O. K. Andersen, Phys. Rev. B 41, 2813 (1990).

    Article  ADS  Google Scholar 

  16. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  17. O. K. Andersen, A. V. Postnikov and S. Yu. Savrasov, in Applications of Multiple Scattering Theory to Materials Science, edited by W. H. Butler, P. H. Dederichs, A. Gonis, and R. L. Weaver, MRS Symposia Proceedings vol. 253 (Materials Research Society, Pittsburgh, 1992), p. 37.

    Google Scholar 

  18. K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).

    Article  ADS  Google Scholar 

  19. M. Šob, V. Vitek, and Y. Oh, in Computational Methods in Materials Science, edited by J. E. Mark, M. E. Glicksman, and S. P. Marsh, MRS Symposia Proceedings vol. 278 (Materials Research Society, Pittsburgh, 1992), p. 205.

    Google Scholar 

  20. O. K. Andersen, O. Jepsen, and D. Glötzel, in Highlights of Condensed-Matter Theory, edited by F. Bassani, F. Fumi, and M. P. Tosi (North-Holland, New York, 1985), p. 59.

    Google Scholar 

  21. V. Vitek and J. Th. M. De Hosson, in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by J. Broughton, W. Krakow, and S. T. Pantelides, MRS Symposia Proceedings vol. 63 (Materials Research Society, Pittsburgh, 1986), p. 137.

    Google Scholar 

  22. M Methfessel, Phys. Rev. B 38, 1537 (1988); M Methfessel, C O Rodriguez, and O K Andersen, Phys. Rev. B 40, 2009 (1989).

    Article  ADS  Google Scholar 

  23. M Šob and V Vitek, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Šob, M., Vitek, V. (1996). On the Role of Non—Pair Potential Terms in Semiempirical Quantum—Mechanical Simulations. In: Gonis, A., Turchi, P.E.A., Kudrnovský, J. (eds) Stability of Materials. NATO ASI Series, vol 355. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0385-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0385-5_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8028-3

  • Online ISBN: 978-1-4613-0385-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics