Atomistic Studies Of The Structure Of Grain Boundaries and Dislocations

  • V. Vitek
Part of the NATO ASI Series book series (NSSB, volume 355)

Abstract

Grain boundaries and dislocations are the most common extended defects in crystalline materials. The principal difference between them is that grain boundaries are planar imperfections which are not accompanied by long-range strain and stress fields, while dislocations are line defects that produce long-range elastic strains and stresses in the material. They both strongly affect, and to a great extent control, the physical and mechanical properties of materials. This is the reason why both dislocations and grain boundaries, and also more general types of interfaces, have been studied very extensively throughout the development of materials science. A common feature of both grain boundaries and dislocations is that their basic characteristics are of crystallographic, geometrical nature. Indeed, in earlier structural studies these characteristics were the main topic of experimental and theoretical investigations (Bollman, 1970; Hirth and Lothe, 1982; Sutton, 1984; Sutton and Balluffi, 1995). In the case of dislocations they were closely linked with studies of their elastic fields and associated long-range interactions (Nabarro, 1967; Hirth and Lothe, 1982). Since crystallographic attributes of dislocations and grain boundaries have to be defined prior to any study of their structures and properties we summarize these characteristics briefly in the following section.

Keywords

Nickel Anisotropy Enthalpy Hexagonal Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackland, G.J., Finnis, M.W., and Vitek, V., 1988, J. Phys. F: Metal Phys. 18:L153.ADSCrossRefGoogle Scholar
  2. Ackland, G.J., and Thetford, R., 1987, Philos. Mag. A 56:15.ADSCrossRefGoogle Scholar
  3. Ackland, G.J., Tichy, G., Vitek, V., and Finnis, M.W., 1987, Philos. Mag. A 56:735.ADSCrossRefGoogle Scholar
  4. Ackland, G.J., and Vitek, V., 1990, Phys. Rev. B 41:10324.ADSCrossRefGoogle Scholar
  5. Adams, J.B., Wolfer, W.G., and Foiles, S.M., 1989, Phys. Rev. B 40:9479.ADSCrossRefGoogle Scholar
  6. Adby, P.R., and Dempster, M.A.H., 1974,“Introduction to Optimization Methods”, Chapman & Hall, London.MATHGoogle Scholar
  7. Akhiezer, N.I. , 1965,“The Classical Moment Problem”, Hafner Pubi. Co., New York. MATHGoogle Scholar
  8. Alber, E.S., Bassani, J.L., Vitek, V., and Wang, G.J., 1994, Modelling and Simulation in Mat Sci. Eng. 2:455.Google Scholar
  9. Alber, I., Bassani, J.L., Khantha, M., Vitek, V., and Wang, G.J., 1992, Phil. Trans. Roy. Soc. London A 339:555.ADSCrossRefGoogle Scholar
  10. Alexander, H., 1986, in “Dislocations in Solids”, F.R.N. Nabarro, ed., Vol. 7, North-Holland, Amsterdam, p. 114.Google Scholar
  11. Alinaghian, P., Gumbsch, P., Skinner, A.J., and Pettifor, D.G., 1993, J. Phys.: Condens. Matter5:5795.ADSCrossRefGoogle Scholar
  12. Alinaghian, P., Nishitani, S.R., and Pettifor, D.G., 1994, Philos. Mag. B 69:889.Google Scholar
  13. Amelinckx, S., 1979, in “Dislocations in Solids”, F.R.N. Nabarro, ed., Vol. 2, North-Holland, Amsterdam, p. 294.Google Scholar
  14. Aoki, M., Gumbsch, P., and Pettifor, D.G., 1993, in “Interatomic Potentials and Structural Stability”, K. Tarakura and H. Akai, eds., Springer, Berlin, p.23Google Scholar
  15. Aoki, M., and Pettifor, D.G., 1994, Mat. Sci. Eng. A 176:19.CrossRefGoogle Scholar
  16. Aucouturier, M., editor, 1990, “Intergranular and Interphase Boundaries in Materials”, J. Phys. France 51:C1.Google Scholar
  17. Baker, I. , 1995, Mat. Sci. Eng. A 192/193:1. Google Scholar
  18. Balluffi, R.W., 1982, Metall Trans. A 13:2069.ADSCrossRefGoogle Scholar
  19. Basinski, Z.S., Duesberry, M.S., and Taylor, R., 1971, Can. J. Phys. 49:2160.ADSGoogle Scholar
  20. Baskes, M.I., 1992, Phys. Rev. B 46:2727.CrossRefGoogle Scholar
  21. Bassani, J.L., Vitek, V., and Alber, I., 1992, Acta Metall. Mater. 40:S307.CrossRefGoogle Scholar
  22. Besold, G., and Mouritsen, O.G., 1994, Phys. Rev. B 50:6573.CrossRefGoogle Scholar
  23. Bigger, J.R.K., Mclnnes, D.A., Sutton, A.P., Payne, M.C., Stich, I., Kingsmith, R.D., Bird, D.M., and Clarke, L.J., 1992, Phys. Rev. Lett. 69:2224.ADSCrossRefGoogle Scholar
  24. Blum, B., Menyhard, B., Luzzi, D.E., and McMahon, C.J., 1990, Scripta. Metall. Mater. 24:2169.Google Scholar
  25. Bollman, W. , 1970,“Crystal Defects and Crystalline Interfaces”, Springer, Berlin. Google Scholar
  26. Born, M., and Huang, K., 1954,“Dynamical Theory of Crystal Lattices”, Clarendon Press, Oxford.MATHGoogle Scholar
  27. Born, M., and Mayer, J.E., 1932, Z. Phys. 75:1.MATHCrossRefGoogle Scholar
  28. Bourret, A., and Bacmann, J.J., 1986, in “JIMIS-4”, Y. Ishida et al., eds., Grain Boundary Structure and Related Phenomena, The Japan Institute of Metals, Minakami, Japan, p. 125.Google Scholar
  29. Bowen, D.K., Christian, J.W., and Taylor, G., 1967, Can. J. Phys. 45:903.ADSGoogle Scholar
  30. Bradley, A.J., and Taylor, A., 1937, Proc. Roy. Soc. London A 159:56.ADSCrossRefGoogle Scholar
  31. Brandon, D.G., Ralph, B., Ranganathan, S., and Wald, M.S., 1964, Acta Metall. 12:813.CrossRefGoogle Scholar
  32. Brown, F.C., 1967, “Physics of Solids”, Benjamin, New York.Google Scholar
  33. Campbell, G.H., Foiles, S.M., Gumbsch, P., Rühle, M., and King, W.E., 1993, Phys. Rev. Lett. 70:449.ADSCrossRefGoogle Scholar
  34. Carlsson, A.E., 1990, in “Solid State Physics”, H. Ehrenreich and D. Turnbull, eds., Vol. 43, Academic Press, New York, p. 1; 1991a, Phys. Rev. B 44:6590; 1991b, in “Defects in Materials”, P.D. Bristowe, J.E. Epperson, J.E. Griffith and Z. Liliental-Weber, eds., Vol. 209, Materials Research Society, Pittsburgh, p. 165.Google Scholar
  35. Carlsson, A.E., and Meschter, P.J., 1989, J. Mater. Res. 4:1060.ADSCrossRefGoogle Scholar
  36. Catlow, C.R.A., Dixon, M., and Mackrodt, W.C., 1982, in “Computer Simulation of Solids”, CR.A. Catlow and W.C Mackrodt, eds., Lecture Notes in Physics, Vol. 166, Springer, Berlin, p. 130.Google Scholar
  37. Catlow, C.R.A., Faux, I.D., and Norgett, M.J., 1976, J. Phys. C: Solid State Phys. 9:419.ADSCrossRefGoogle Scholar
  38. Celinski, Z., Heinrich, B., Cochran, J.F., Myrtle, K., and Arrott, A. S., 1991, in “Science and Technology of Nanostructured Magnetic Materials”, G. C. Hadjipanayis and G. A. Prinz, eds., Plenum Press, New York, p. 77.Google Scholar
  39. Chadi, D.J., 1984, Phys. Rev. B 29:785.ADSCrossRefGoogle Scholar
  40. Chelikowsky, J.R., and Spence, J.C.H., 1984, Phys. Rev. B 30:694.CrossRefGoogle Scholar
  41. Christian, J.W. , 1975, “The Theory of Transformations in Metals and Alloys”, Pergamon Press, Oxford; 1983, Metall. Trans. A 14:1237; 1994, Metallurgical and Materials TransactionsA 25:1821. Google Scholar
  42. Christian, J.W., and Crocker, A.G., 1980, in “Dislocations in Solids”, F.R.N. Nabarro, ed., Vol. 3, North-Holland, Amsterdam, p. 165.Google Scholar
  43. Christian, J.W., and Vitek, V., 1970, Rep. Prog. Phys. 33:307.ADSCrossRefGoogle Scholar
  44. Clark, W.A.T., Dahmen, U., and Briant, C.L., editors, 1992, “Structure and Properties of Interfaces in Materials”, Mat. Res. Soc. Symp. Vol. 238, Materials Research Society, Pittsburgh.Google Scholar
  45. Cornelis, I., and Wayman, CM., 1974, Acta Metall. 22:291. CrossRefGoogle Scholar
  46. Cyrot-Lackmann, F., 1967, Adv. Phys. 16:393.ADSCrossRefGoogle Scholar
  47. Dagens, L., Rasolt, L.M., and Taylor, R., 1975, Phys. Rev. B 11: 2726.ADSCrossRefGoogle Scholar
  48. Darolia, R., Lahrman, D.F., Field, R.D., Dobbs, J.R., Chang, K.M., Goldman, E.H., and Konitzer, D.G., 1992, in “Ordered Inmtermetallics -Physical Metallurgy and Mechanical Behaviour”, CT. Liu, R.W. Cahn and G. Sauthoff, eds., Kluwer Academic Publishers, Dordrecht, p. 679.Google Scholar
  49. Daw, M.S., and Baskes, M.I., 1984, Phys. Rev. B 29:6443.CrossRefGoogle Scholar
  50. Daw, M.S., Foiles, S.M., and Baskes, M.I., 1993, Mater Sci Rep 9:251.CrossRefGoogle Scholar
  51. Dick, B.G., and Overhauser, A.W., 1958, Phys. Rev. 112:90.CrossRefGoogle Scholar
  52. Dimiduk, D.M., 1991, Journal de Physique III 1:1025.ADSCrossRefGoogle Scholar
  53. Dipersio, J., and Escaig, B., 1977, Phys. Stat. Sol. (a) 40:393. ADSCrossRefGoogle Scholar
  54. Ducastelle, F., and Cyrot-Lackmann, F., 1970, J. Phys. Chem. Sol. 31:1295.ADSCrossRefGoogle Scholar
  55. Duesbery, M.S., 1989, in “Dislocations in Solids”, F.R.N. Nabarro, ed., Vol. 8, North Holland, Amsterdam, p. 67.Google Scholar
  56. Duesbery, M.S., and Basinski, Z.S., 1993, Acta Metall. Mater. 41:643.Google Scholar
  57. Duesbery, M.S., and Foxall, R.A., 1969, Philos. Mag. A 20:719.ADSGoogle Scholar
  58. Duesbery, M.S., Joos, B., and Michel, D.J., 1991, Phys. Rev. B 43:5143.CrossRefGoogle Scholar
  59. Duesbery, M.S., and Richardson, G.Y., 1991, CRC Critical Reviews in Solid State and Materials Science 17:1.CrossRefGoogle Scholar
  60. Duesbery, M.S., Vitek, V., and Bowen, D.K., 1973, Proc. Roy. Soc. London A 332:85.ADSCrossRefGoogle Scholar
  61. Duffy, D.M., 1986, J. Phys. C: Solid State Phys. 19:4393.ADSCrossRefGoogle Scholar
  62. Duffy, D.M., and Tasker, P.W., 1983a, Philos. Mag. A 47:817; 1983b, Philos. Mag. A 48:155.ADSCrossRefGoogle Scholar
  63. Ernst, F., Finnis, M.W., Hofmann, D., Muschik, T., Schonberger, U., Wolf, U., and Methfessel, M., 1992, Phys. Rev. Lett. 69:620.ADSCrossRefGoogle Scholar
  64. Farkas, D., Pasianot, R., Savino, E.J., and Miracle, D.B., 1991, in “High-Temperature Ordered Intermetallic Alloys IV”, L.A. Johnson, D.P. Pope and J.O. Stiegler, eds., Mat. Res. Soc. Symp. Vol. 213, Materials Research Society, Pittsburgh, p. 223.Google Scholar
  65. Farkas, D., and Vailhe, C, 1993, J. Mater. Res. 8:3050.ADSCrossRefGoogle Scholar
  66. Ference, T.G., and Balluffi, R.W., 1988, Scripta Metall. 22:1929.CrossRefGoogle Scholar
  67. Finnis, M.W., Paxton, A.T., Pettifor, D.G., Sutton, A.P., and Ohta, Y., 1988, Philos. Mag. A 58:143.ADSCrossRefGoogle Scholar
  68. Finnis, M.W., and Rühle, M., 1993, in “Materials Science and Technology”, V. Gerold, ed., Vol. 1, VCH, Weinhein, p. 533.Google Scholar
  69. Finnis, M.W., and Sinclair, J.E., 1984, Philos. Mag. A 50:45.ADSCrossRefGoogle Scholar
  70. Fletcher, R., and Powell, M.J.D., 1963, Computer J. 6:16.MathSciNetGoogle Scholar
  71. Foiles, S.M., 1985, Phys. Rev. B 32:7685.CrossRefGoogle Scholar
  72. Foiles, S.M., and Daw, M.S., 1987, J. Mater. Res. 2:5.ADSCrossRefGoogle Scholar
  73. Fonda, R.W., Yan, M., and Luzzi, D.E., 1995, Philos. Mag. Lett. 71:221.ADSCrossRefGoogle Scholar
  74. Forbes, K.R., Glatzel, U., Darolia, A., and Nix, W.D., 1993, in “High-Temperature Ordered intermetallic Alloys V”, I. Baker, R. Darolia, J.D. Whittenberger and M.H. Yoo, eds., Mat. Res. Soc. Symp. Vol. 288, Materials Research Society, Pittsburgh, p. 45.Google Scholar
  75. Frank, F.C., 1950, in “Symposium on the Plastic Deformation of Crystalline Solids”, Office of Naval Research, Pittsburgh, p. 150.Google Scholar
  76. Freeman, A.J., Xu, J.-H., Hong, T., and Lin, W., 1992, in “Ordered Inmtermetallics—Physical Metallurgy and Mechanical Behaviour”, C.T. Liu, R.W. Cahn and G. Sauthoff, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 1.Google Scholar
  77. Frenkel, J., and Kontorova, T., 1938, Phys. Z. Sowj. Un. 13:1.MATHGoogle Scholar
  78. Friedel, J. , 1964,“Dislocations”, Pergamon Press, Oxford. MATHGoogle Scholar
  79. Friedel, J., 1969, in “The Physics of Metals”, J.M. Ziman, ed., Cambridge University Press, Cambridge, p. 340.Google Scholar
  80. Fu, C.L., and Yoo, M.H., 1990, Philos. Mag. Lett. 62:159.; 1992a, Mater Chem Phys 32:25.; 1992b, in “Ordered Inmtermetallics — Physical Metallurgy and Mechanical Behaviour”, C.T. Liu, R.W. Cahn and G. Sauthoff, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 155ADSCrossRefGoogle Scholar
  81. Gaspar, J.P., and Lambin, P., 1985, in “The Recursion Method and its Applications”, D.G. Pettifor and D.L. Weaire, eds., Springer Series in Solid State Sciences, Springer, New York, p. 72 Google Scholar
  82. Gehlen, P., Beeler, J., and Jaffe, R., 1972, “Interatomic Potentials and Simulation of Lattice Defects”, Plenum Press, New York.Google Scholar
  83. Girshick, A., and Vitek, V., 1995, in “High-Temperature Ordered Intermetallic Alloys VI”, J. Horton, I. Baker, S. Hanada, R.D. Noebe and D. Schwartz, eds., Mat. Res. Soc. Symp. Vol. 364, Materials Research Society, Pittsburgh, p. 145.Google Scholar
  84. Granzer, F., Wagner, G., and Eisenblatter, J., 1968, Phys. stat. sol. 30:587. ADSCrossRefGoogle Scholar
  85. Gratias, D., and Portier, R., 1982, J. Phys. France 43:C6–25.MathSciNetGoogle Scholar
  86. Guillope, M., 1986, J. Phys. France 47:1347.CrossRefGoogle Scholar
  87. Hairie, A., Hairie, F., Lebouvier, B., Nourt, G., Paumier, E., Ralantoson, N. and Sutton, A.P., 1994, Interface Sci. 2:17.CrossRefGoogle Scholar
  88. Harrison, W.A., 1980,“Electronic Structure and Properties of Solids”, Freeman, San Francisco. Google Scholar
  89. Hemker, K.J., Viguier, B., and Mills, M.J., 1993, Mat. Set. Eng. A 164:391.CrossRefGoogle Scholar
  90. Heredia, F.E., Tichy, G., Pope, D.P., and Vitek, V., 1989, Acta Metall. 37:2755.CrossRefGoogle Scholar
  91. Hirsch, P.B., 1960, in “Proc. 5th Int. Conf. Crystallography”, Cambridge University, oral communication, p. 139; 1979, J. Phys. France 40:C6.Google Scholar
  92. Hirth, J.P., and Lothe, J., 1982,“Theory of Dislocations”, Wiley-Interscience, New York. Google Scholar
  93. Hofmann, D., and Finnis, M.W., 1994, Acta Metall Mater. 42:3555.CrossRefGoogle Scholar
  94. Hofmann, F., and Ernst, F., 1995, Interface Sci. 2:201.CrossRefGoogle Scholar
  95. Hong, T., and Freeman, A.J., 1991, Phys. Rev. B 43:6446; 1992, J. Mater. Res. 7:68.ADSCrossRefGoogle Scholar
  96. Hornstra, J., 1958, J. Phys. Chem. Sol. 5:129.ADSCrossRefGoogle Scholar
  97. Horton, J., Hanada, S., Baker, I., Noebe, R.D., and Schwartz, D., editors, 1995, “High-Temperature Ordered Intermetallic Alloys VI”, Mat. Res. Soc. Symp. Vol. 364, Materials Research Society, Pittsburgh. Google Scholar
  98. Hug, G., Loiseau, A., and Lasalmonie, A., 1986, Philos. Mag. A 54:47.ADSCrossRefGoogle Scholar
  99. Huntington, H.B., Dickey, J.E., and Thomson, R., 1955, Phys. Rev. 100:1117.CrossRefGoogle Scholar
  100. Inui, H., Nakamura, A., Oh, M.H., and Yamaguchi, M., 1992a, Philos. Mag. A 66:557.ADSCrossRefGoogle Scholar
  101. Inui, H., Oh, M.H., Nakamura, A., and Yamaguchi, M., 1992b, Acta Metall. Mater. 40:3095.Google Scholar
  102. Johnson, R.A., 1988, Phys. Rev. B 37:3924.CrossRefGoogle Scholar
  103. Jones, R., 1979, J. Phys. France 40:C6.Google Scholar
  104. Joos, B., Ren, Q., and Duesbery, M.S., 1994, Phys. Rev. B 50:5890.CrossRefGoogle Scholar
  105. Kajiwara, Z., 1971, J. Phys. Soc. Japan30:1757. ADSCrossRefGoogle Scholar
  106. Kalonji, G., and Cahn, J.W., 1982, J. Phys. France 43:C6–33.Google Scholar
  107. Kawabata, T., Kanai, T., and Izumi, O., 1985, Acta Metall. 33:1355.CrossRefGoogle Scholar
  108. Kaxiras, E., and Duesbery, M.S., 1993, Phys. Rev. Lett. 70:3752.ADSCrossRefGoogle Scholar
  109. Keating, P.N., 1966, Phys. Rev. 145:637.CrossRefGoogle Scholar
  110. Kenway, P. R., 1994, J. Am. Ceram. Soc. 77, 349.CrossRefGoogle Scholar
  111. Khantha, M., Cserti, J., and Vitek, V., 1992a, Scripta. Metall. Mater. 27:487; 1992b, Scripta. Metall. Mater. 27: 481.Google Scholar
  112. Khantha, M., Vitek, V., and Pope, D.P., 1991a, in “High-Temperature Ordered Intermetallic Alloys IV”, L.A. Johnson, D.P. Pope and J.O. Stiegler, eds., Mat. Res. Soc. Symp. Vol. 213, Materials Research Society, Pittsburgh, p. 229; 1994, Modelling and Simulation in Mat. Sci. Eng. 2:587.Google Scholar
  113. Khantha, M., Vitek, V., and Pope, D.P., 1991b, in “High-Temperature Ordered Intermetallic Alloys IV”, L.A. Johnson, D.P. Pope and J.O. Stiegler, eds., Mat. Res. Soc. Symp. Vol. 213, Materials Research Society, Pittsburgh, p. 229.Google Scholar
  114. King, A.H., and Smith, D.A., 1980, Acta Crystallogr. 36:335.Google Scholar
  115. King-Smith, R.D., Payne, M.C., and Lin, J.-S., 1991, Phys. Rev. B 44:13063.CrossRefGoogle Scholar
  116. Kittel, C. 1986,“Introduction to Solid State Physics”, John Wiley, New York. Google Scholar
  117. Kohlhoff, S., Gumbsch, P., and Fischmeister, H.F., 1991, Philos. Mag. A 64:851.ADSCrossRefGoogle Scholar
  118. Kohyama, M., Yamamoto, R., Watanabe, Y., Ebata, Y., and Kinishita, M., 1988, J. Phys. C: Solid State Phys. 21:3205.ADSCrossRefGoogle Scholar
  119. Komninou, Ph., and Rocher, A., editors, 1993, “Intergranular and Interphase Boundaries in Materials: iib92”, Materials Science Forum, Trans Tech Publications, Aedermannsdorf.Google Scholar
  120. Kraft, T., Marcus, P.M., Methfessel, M., and Scheffler, M., 1993, Phys. Rev. B 48:5886.CrossRefGoogle Scholar
  121. Kroupa, F., and Lejček, L., 1972, Czech. J. Phys. B 22:813.Google Scholar
  122. Kubin, L.P., 1982, Rev. Deform. Behav. Materials 4:181.Google Scholar
  123. Laub, W., Oswald, A., Muschik, T., Gust, W., and Fournelle, RA., 1994, in “Solid-Solid Phase Transformations”, W.C. Johnson, J.M. Howe, D.E. Laughlin and W.A. Soffa, eds., TMS, Warrendale, Pennsylvania, p. 1115.Google Scholar
  124. Lee, J. K., 1981, “Interatomic Potentials and Crystalline Defects”, TMS, Warrendale, Pennsylvania.Google Scholar
  125. Lejček, L., 1972, Czech. J. Phys. B 22:802.ADSCrossRefGoogle Scholar
  126. LeSar, R., Najafabadi, R., and Srolovitz, D.J., 1989, Phys. Rev. Lett. 63:624.ADSCrossRefGoogle Scholar
  127. Lewis, G.V., and Catlow, C.R.A., 1988, J. Phys. C: Solid State Phys. 18:1149.ADSCrossRefGoogle Scholar
  128. Luzzi, D.E., 1991, Ultramicroscopy 37:180.CrossRefGoogle Scholar
  129. Ma, Q., Liu, C.L., Adams, J.B., and Balluffi, R.W., 1993, Acta Metall. Mater. 41:143.Google Scholar
  130. Marinopoulos, A., Vitek, V., and Carlsson, A.E., 1995, Philos. Mag. Ato be published. Google Scholar
  131. Mark, J. E., Glicksman, M. E., and Marsh, S. P., editors, 1992, “Computational Methods in Materials Science”, Mat.Res. Soc. Symp. Vol. 278, Materials Research Society, Pittsburgh. Google Scholar
  132. Martin, J.W., 1975a, J. Phys. C: Solid State Phys. 8:2837; 1975b, J. Phys. C: Solid State Phys. 8:2858.ADSCrossRefGoogle Scholar
  133. Masuda, K., Kobayashi, K., Sato, A., and Mori, T., 1981, Philos. Mag. B 43:19.Google Scholar
  134. McCullough, C., Valencia, J. J., Mateous, H., Levi, C. G., Mehrabian, R., and Rhyne, K. A., 1988, Scripta Metall. 22:1131. CrossRefGoogle Scholar
  135. Menyhard, M., Blum, B., and McMahon, C.J., 1989, Acta Metall. 37:549.CrossRefGoogle Scholar
  136. Menyhard, M., Yan, M., and Vitek, V., 1994, Acta Metall. Mater. 42:2783CrossRefGoogle Scholar
  137. Mills, M.J., Daw, M.S., Angelo, J.E., and Miracle, D.B., 1995, in “High-Temperature Ordered Intermetallic Alloys VI”, J. Horton, I. Baker, S. Hanada, R.D. Noebe and D. Schwartz, eds., Mat. Res. Soc. Symp. Vol. 364, Materials Research Society, Pittsburgh, p. 401.Google Scholar
  138. Mills, M.J., Daw, M.S., Foiles, S.M., and Miracle, D.B., 1993, in “High-Temperature Ordered Intermetallic Alloys V”, I. Baker, R. Darolia, J.D. Whittenberger and M.H. Yoo, eds., Mat. Res. Soc. Symp. Vol. 288, Materials Research Society, Pittsburgh, p. 257. Google Scholar
  139. Mills, M.J., and Miracle, D.B., 1993, Acta Metall. Mater. 41:85.Google Scholar
  140. Minami, F., Kuramoto, E., and Takeuchi, S., 1972, Phys. Stat Sol(a) 12:581; 1974, Phys. Stat Sol (a) 22:81. ADSCrossRefGoogle Scholar
  141. Moriarty, J.A., 1990a, Phys. Rev. B 42:1609; 1990b, in “Many-Atom Interactions in Solids”, R.M. Nieminen, M.J. Puska and M.J. Manninen, eds., Springer, Berlin, p. 158.Google Scholar
  142. Moriarty, J.A., and Phillips, R., 1991, Phys. Rev. Lett. 66:3036.ADSCrossRefGoogle Scholar
  143. Nabarro, F.R.N. , 1947, Proc. Phys. Soc. London B59:256; 1967,“Theory of Crystal Dislocations”, Clarendon Press, Oxford. ADSCrossRefGoogle Scholar
  144. Nandekar, A.S., and Narayan, J., 1990, Philos. Mag. A 61:873.ADSCrossRefGoogle Scholar
  145. Needels, M., Rappe, A.M., Bristowe, P.D., and Joannopoulos, J.D., 1992, Phys. Rev. B 46:9768. ADSGoogle Scholar
  146. Neumann, F. , 1885,“Vorlesungen über die Theorie der Elasticität”, Leipzig. MATHGoogle Scholar
  147. Nguyen, T., Ho, P.S., Kwok, T., Nitta, C, and Yip, S., 1992, Phys. Rev. B 46:6050.CrossRefGoogle Scholar
  148. Oh, Y., and Vitek, V., 1986, Acta Metall. 34:1941.CrossRefGoogle Scholar
  149. Othen, P.J., Jenkins, M.L., Smith, G.D.W., and Phythian, W.J., 1991, Philos. Mag. Lett. 64:383.ADSCrossRefGoogle Scholar
  150. Paidar, V., Gemperlová, J., Lejček, P., and Vitek, V., 1992, Mat Sci Eng. A 154:113.CrossRefGoogle Scholar
  151. Paidar, V., Pope, D.P., and Vitek, V., 1984, Acta Metall 32:435.CrossRefGoogle Scholar
  152. Paidar, V., Yamaguchi, M., Pope, D.P., and Vitek, V., 1982, Philos. Mag. A 45: 883.ADSCrossRefGoogle Scholar
  153. Panova, J., and Farkas, D., 1995, in “High-Temperature Ordered Intermetallic Alloys VI”, J. Horton, I. Baker, S. Hanada, R.D. Noebe and D. Schwartz, eds., Mat. Res. Soc. Symp. Vol. 364, Materials Research Society, Pittsburgh, p. 151.Google Scholar
  154. Parry, D.E., 1975, Surf. Set 49:433.Google Scholar
  155. Parthasarathy, T.A., Dimiduk, D.M., Woodward, C, and Diller, D., 1991, in “High-Temperature Ordered Intermetallic Alloys IV”, L.A. Johnson, D.P. Pope and J.O. Stiegler, eds., Mat. Res. Soc. Symp. Vol. 213, Materials Research Society, Pittsburgh, p. 337.Google Scholar
  156. Parthasarathy, T.A., Rao, S.I., and Dimiduk, D.M., 1993, Philos. Mag. A 67:643.ADSCrossRefGoogle Scholar
  157. Pasianot, R., Farkas, D., and Savino, E.J., 1990, Scripta. Metall. Mater. 24:1669; 1991, Journal de Physique III 1:997. CrossRefGoogle Scholar
  158. Pasianot, R., Xie, Z., Farkas, D., and Savino, E.J., 1994, Modelling and Simulation in Mat. Sci Eng. 2:383.Google Scholar
  159. Paxton, A.T., Methfessel, M., and Potaglou, H.M., 1990, Phys. Rev. B 41:8127.CrossRefGoogle Scholar
  160. Paxton, A.T., and Sutton, A.P., 1989, Acta Metall. 37:1693.CrossRefGoogle Scholar
  161. Payne, M.C., Clarke, L.J., and Stich, I., 1992, Phil Trans Roy Soc London A 341:211.ADSCrossRefGoogle Scholar
  162. Peierls, R., 1940, Proc. Phys. Soc. London B 52:34.ADSCrossRefGoogle Scholar
  163. Pennison, J.-M. , 1988, J. Phys. France 49:C5087.Google Scholar
  164. Pettifor, D.G., 1983, in “Physical Metallurgy”, R.W. Cahn and P. Haasen, eds., Elsevier, Amsterdam, p. 147; 1990, in “Many Atom Interactions in Solids”, R.M. Nieminen, J. Puska and M. Manninen, eds., Springer, Berlin, p. 64; 1991, Phys. Rev. Lett. 63:2480; 1992, in “Electron Theory in Alloy Design”, A.H. Cottrell and D.G. Pettifor, eds., The Institute of Metarials, London, p. 81.Google Scholar
  165. Pettifor, D.G., Aoki, M., Gumbsch, P., Horsfield, A.P., Nguyen Manh, D., and Vitek, V., 1995, Mat. Sei Eng. A 192/193:24. CrossRefGoogle Scholar
  166. Pettifor, D. G., and Cottrell, A. H., editors, 1992,“Electron Theory in Alloy Design”, The Institute of Materials, London. Google Scholar
  167. Phillpot, S.R., and Wold, D., 1988, in “Interfacial Structure, Properties and Design”, M.H. Yoo, W.A.T. Clark and C.L. Briant, eds., Mat. Res. Soc. Symp. Vol. 122, Materials Research Society, Pittsburgh, p. 103.Google Scholar
  168. Pond, R.C., and Bollmann, W., 1979, Phil. Trans. Roy. Soc. London A 292:449.MathSciNetADSCrossRefGoogle Scholar
  169. Pond, R.C., and Vlachavas, D.S., 1983, Proc. Roy. Soc. London A 385:95.MathSciNetADSCrossRefGoogle Scholar
  170. Pond, R.C., and Vitek, V., 1977, Proc. Roy. Soc. London A 357:453.ADSCrossRefGoogle Scholar
  171. Pontikis, V., 1988, J. Phys. France 49:C5.Google Scholar
  172. Pope, D.P., and Ezz, S.S., 1984, Int. Met. Rev. 25:233.Google Scholar
  173. Puls, M.P., 1980, Philos. Mag. A 41:353.ADSCrossRefGoogle Scholar
  174. Puls, M.P., and Norgett, M.J., 1976, J. Appi Phys. 47:466.ADSCrossRefGoogle Scholar
  175. Rabier, J., and Grilhe, J., 1973, J. Phys. Chem. Sol 34: 1031.ADSCrossRefGoogle Scholar
  176. Rabier, J., and Puls, M.P., 1989, Philos. Mag. A 59:533.ADSCrossRefGoogle Scholar
  177. Read, W.T., and Shockley, W., 1950, Phys. Rev. 78:275.MATHCrossRefGoogle Scholar
  178. Rice, J.R., 1992, J. Mech. Phys. Sol. 40:239.ADSCrossRefGoogle Scholar
  179. Rice, J.R., and Beltz, G.E., 1994, J. Mech. Phys. Sol. 42:333.ADSMATHCrossRefGoogle Scholar
  180. Rittner, J.D., Udler, D., Seidman, D.N., and Oh, Y., 1995, Phys. Rev. Lett 74:1115.ADSCrossRefGoogle Scholar
  181. Romig, A. D., Fowler, D. E., and Bristowe, P. D., editors, 1991, “Structure/Property Relationships for Metal/Metal Interfaces”, Mat. Res. Soc. Symp. Vol. 229, Materials Research Society, Pittsburgh. Google Scholar
  182. Rottman, C, 1989, Scripta Metall 23:1037.CrossRefGoogle Scholar
  183. Rühle, M., and Petzow, G., 1981, in “Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems”, J. Pask and A. Evans, eds., Plenum Press, New York, p. 167.Google Scholar
  184. Sakai, A., Nishioka, Y., and Suzuki, H., 1979, J. Phys. Soc. Japan 46:881.ADSCrossRefGoogle Scholar
  185. Sangster, M.J.L., 1973, J. Phys. Chem. Sol. 34:355.ADSCrossRefGoogle Scholar
  186. Sangster, M.J.L., Schröder, U., and Arwood, A.M., 1978, J. Phys. C: Solid State Phys. 11:1523.ADSCrossRefGoogle Scholar
  187. Sangster, M.J.L., and Stoneham, 1981, Phil. Magazine 43:597.Google Scholar
  188. Sato, A., and Masuda, K., 1981, Philos. Mag. B 43:1.Google Scholar
  189. Schmidt, C., Ernst, F., Finnis, M.W., and Vitek, V., 1995, Phys. Rev. Lett, to be published. Google Scholar
  190. Schwartz, D., Vitek, V., and Sutton, A.P., 1985, Philos. Mag. A 51: 499.ADSCrossRefGoogle Scholar
  191. Seidman, D.N., Krakauer, B.W., and Udler, D., 1994, J. Phys. Chem. Sol. 55:1035.ADSCrossRefGoogle Scholar
  192. Self, P.G., and O’Keefe, M.A., 1988, in “High Resolution Transmision Electron Microscopy and Associated Techniques”, P.R. Buseck, J.M. Cowley and L. Eyring, eds., Oxford University Press, Oxford, p. 244.Google Scholar
  193. Siegl, R., Vitek, V., Luzzi, D.E., and Yan, M., 1995, in “Structure and Phase Stability”, G. M. Stocks, C. T. Liu and P. E. A. Turchi, eds., to be published, TMS, Warrendale, Pennsylvania. Google Scholar
  194. Simmons, J.P., Rao, S.I., and Dimiduk, D.M., 1993, in “High-Temperature Ordered Intermetallic Alloys V”, I. Baker, R. Darolia, J.D. Whittenberger and M.H. Yoo, eds., Mat. Res. Soc. Symp. Vol. 288, Materials Research Society, Pittsburgh, p. 335.Google Scholar
  195. Sinclair, R., Dahmen, U., and Smith, D. J., editors, 1990, “High Resolution Electron Microscopy of Defects in Materials”, Mat. Res. Soc. Symp. Vol. 183, Materials Research Society, Pittsburgh. Google Scholar
  196. Slater, J.C., and Koster, G.F., 1954, Physical Review 94:1498.ADSMATHCrossRefGoogle Scholar
  197. Šob, M., Vitek, V., and Oh, Y., 1992, in “Computational Methods in Materials Science”, J.E. Mark, M.E. Glicksman and S.P. Marsh, eds., Mat. Res. Soc. Symp. Vol. 278, Materials Research Society, Pittsburgh, p. 205.Google Scholar
  198. Srolovitz, D.J., Wang, H.Y., and Najafabadi, 1992, in “Intergranular and Interphase Boundaries in Materials: iib92”, P. Komninou and A. Rocher, eds., Trans. Tech Publications, Aedermannsdorf, p. 23.Google Scholar
  199. Stillinger, F., and Weber, T., 1985, Phys. Rev. B 31:5262.CrossRefGoogle Scholar
  200. Stroh, A.N., 1962, J. Math. Phys. 7:625.MathSciNetGoogle Scholar
  201. Sun, CP., and Balluffi, R.W., 1982, Philos. Mag. A 46:49.ADSCrossRefGoogle Scholar
  202. Sutton, A.P. , 1984, Int. Met. Rev. 29:377; 1988, Acta Metall. 36:1291; 1989a, Philos. Mag. Lett.59:53; 1989b, Philos. Mag. A60:147; 1991, Philos. Mag. A63:793; 1992, Phil Trans Roy Soc London A341:233. ADSGoogle Scholar
  203. Sutton, A.P., and Balluffi, R.W., 1987, Acta Metall. 35:2177; 1995, “Interfaces in Crystalline Materials”, Oxford University Press, Oxford.Google Scholar
  204. Sutton, A.P., Finnis, M.W., Pettifor, D.G., and Ohta, Y., 1988, J. Phys. C: Solid State Phys. 21:35.ADSCrossRefGoogle Scholar
  205. Sutton, A.P., and Vitek, V., 1983a, Phil. Trans. Roy. Soc. London A309:1; 1983b, ibid309:37; 1983c, ibid309:55. ADSCrossRefGoogle Scholar
  206. Takeuchi, S., 1979, Philos. Mag. A 39:661.ADSCrossRefGoogle Scholar
  207. Takeuchi, S., and Kuramoto, E., 1973, Acta Metall. 21:415; 1975, J. Phys. Soc. Japan 38:480.ADSCrossRefGoogle Scholar
  208. Tarnow, E., Bristowe, P.D., Joannopoulos, J.D., and Payne, M.C, 1989, J. Phys. C: Solid State Phys. 1: 327.Google Scholar
  209. Tarnow, E., Dallot, P., Bristowe, P.D., Joannopoulos, J.D., Francis, G.P., and Payne, M.C, 1990, Phys. Rev. B 42:3644.CrossRefGoogle Scholar
  210. Tasker, P.W., and Duffy, D.M., 1983, Philos. Mag. A 47:L45.ADSCrossRefGoogle Scholar
  211. Tersoff, J., 1988a, Phys. Rev. B 37:6991; 1988b, Phys. Rev. B 38:9902.CrossRefGoogle Scholar
  212. Tersoff, J., Vanderbilt, D., and Vitek, V., editors, 1989, “Atomic Scale Calculations in Materials Science”, Mat. Res. Soc. Symp. Vol. 141, Materials Research Society, Pittsburgh. Google Scholar
  213. Thomson, R.E., and Chadi, D.J., 1984, Phys. Rev. B 29:889.CrossRefGoogle Scholar
  214. Tichy, G., Vitek, V., and Pope, D.P., 1986a, Philos. Mag. A 53:467; 1986b, Philos. Mag. A 53:485.ADSCrossRefGoogle Scholar
  215. Torrens, I.M., 1972,“Interatomic Potentials”, Academic Press, New York.Google Scholar
  216. Urdaneta, E.C., Luzzi, D.E., and McMahon, C.J., 1992, in “Structure and Properties of Interfaces in Materials”, W.A.T. Clark, U. Dahmen and C.L. Briant, eds., Mat. Res. Soc. Symp. Vol. 238, Materials Research Society, Pittsburgh, p. 201.Google Scholar
  217. Van Heugten, W.F.W.M., Caspers, L.M., and De Hosson, J.T.M., 1979, Phys. Stat. Sol. (b) 92:199. ADSGoogle Scholar
  218. Vesely, D. , 1968, Phys. Stat. Sol. (a) 29:675. ADSGoogle Scholar
  219. Vitek, V., 1968, Philos. Mag. A 18:773; 1975, Crystal Lattice Defects 5:1; 1976, Proc. Roy. Soc. London A 352:109; 1985, in “Dislocations and Properties of Real Materials”, M. Lorretto, ed., The Institute of Metals, London, p. 30; 1992, Prog. Mater. Sci. 36:1.Google Scholar
  220. Vitek, V., Ackland, G.J., and Cserti, J., 1991b, in “Alloy Phase Stability and Design”, G.M. Stocks, D.P. Pope and A.G. Giamei, eds., MRS Symposia Proceedings, Vol. 186, Materials Research Society, Pittsburgh, p. 237Google Scholar
  221. Vitek, V., Ackland, G.J., and Cserti, J., 1991a, in “Alloy Phase Stability and Design”, G.M. Stocks, D.P. Pope and A.G. Giamei, eds., Mat. Res. Soc. Symp. Vol. 186, Materials Research Society, Pittsburgh, p. 237. Google Scholar
  222. Vitek, V., Yan, M., and Ackland, G. J., 1992, in “Ordered Inmtermetallics—Physical Metallurgy and Mechanical Behaviour”, C. T. Liu, R. W. Cahn and G. Sauthoff, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 335. Google Scholar
  223. Vitek, V., Cserti, J., and Duesbery, M.S., 1995a,“Professor Sir Peter Hirsch Festschrift”, C. J. Humpreys, ed., to be published. Google Scholar
  224. Vitek, V., and De Hosson, J.T.M., 1986, in “Computer-Based Microscopic Description of the Structure and Properties of Materials”, J. Broughton, W. Krakow and S.T. Pantelides, eds., Mat. Res. Soc. Symp. Vol. 63, Materials Research Society, Pittsburgh, p. 125.Google Scholar
  225. Vitek, V., Khantha, M., Cserti, J., and Sodani, Y., 1991c, in “Int. Symp. On Intermetallic Compounds”, O. Izumi, ed., The Japan Institute of Metals, Sendai, p. 3.Google Scholar
  226. Vitek, V., Lejček, L., and Bowen, D.K., 1972, in “Interatomic Potentials and Simulation of Lattice Defects”, P.C. Gehlen, J.R. Beeler and R.I. Jaffee, eds., Plenum Press, New York, p. 493.Google Scholar
  227. Vitek, V., Minonishi, Y., and Wang, G.J., 1985, J. Phys. France 46:C4–171.Google Scholar
  228. Vitek, V., Perrin, R.C., and Bowen, D.K., 1970, Philos. Mag. A 21:1049.ADSGoogle Scholar
  229. Vitek, V., Pope, D.P., and Bassani, J.S., 1995b, in “Dislocations in Solids”, F.R.N. Nabarro, ed., to be published, North Holland, Amsterdam. Google Scholar
  230. Vitek, V., Sodani, Y., and Cserti, J., 1991d, in “High-Temperature Ordered Intermetallic Alloys IV”, L.A. Johnson, D.P. Pope and J.O. Stiegler, eds., Mat. Res. Soc. Symp. Vol. 213, Materials Research Society, Pittsburgh, p. 195.Google Scholar
  231. Vitek, V., and Srolovitz, D. J., 1989, editors, “Atomistic Simulation of Materials: Beyond Pair Potentials”, Plenum Press, New York.ADSCrossRefGoogle Scholar
  232. Vitek, V., Wang, G.J., Alber, E.S., and Bassani, J.L., 1994, J. Phys. Chem. Sol. 55:1147.ADSCrossRefGoogle Scholar
  233. Wang, G.-J., and Vitek, V., 1986, Acta Metall. 34:951.CrossRefGoogle Scholar
  234. Wang, G.J., Sutton, A.P., and Vitek, V., 1984, Acta Metall 32:1093.CrossRefGoogle Scholar
  235. Warrington, D.H., and Grimmer, H., 1974, Philos. Mag. 30:461.Google Scholar
  236. Watson, R.E., Davenport, J.W., Perlman, M.L., and Sham, T.K., 1981, Phys. Rev. B 24:1791.CrossRefGoogle Scholar
  237. Wee, D.M., Noguchi, O., Oya, Y., and Suzuki, T., 1980, Trans. Japan Inst. Met 21:237.Google Scholar
  238. Wee, D.M., Pope, D.P., and Vitek, V., 1984, Acta Metall. 32:829.CrossRefGoogle Scholar
  239. Whitworth, R.W., 1975, Adv. Phys. 24:203.Google Scholar
  240. Wolf, D., 1980, J. Phys. France 41:C6–142; 1982, J. Phys. France 43:C6–45; 1984a, J Amer Ceram Soc 67:1; 1984b, Philos. Mag. A 49:823; 1989a, Scripta Metall. 23:1913; 1989b, Acta Metall. 37:1983; 1989c, Acta Metall. 37:2823; 1990a, J. Mater. Res. 5:1708; 1990b, Acta Metall. Mater. 38:781; 1990c, Acta Metall. Mater. 38:791.Google Scholar
  241. Wolf, D., Lutsko, J.F., and Kluge, M., 1989, in “Atomistic Simulations of Materials: Beyond Pair Potentials”, V. Vitek and D. Srolovitz, eds., Plenum Press, New York, p. 245.Google Scholar
  242. Wolf, U., Ernst, F., Muschik, T., Finnis, M.W., and Fischmeister, H.F., 1992a, in “Structure and Properties of Interfaces in Materials”, W.A.T. Clark, U. Dahmen and C.L. Briant, eds., Mat. Res. Soc. Symp. Vol. 238, Materials Research Society, Pittsburgh, p. 177; 1992b, Philos. Mag. A 66:991.Google Scholar
  243. Woo, C.H., and Puls, M.P., 1977a, Philos. Mag. 35:727; 1977b, Philos. Mag. 35:1641.Google Scholar
  244. Woodward, C, MacLaren, J.M., and Dimiduk, D.M., 1993, in “High-Temperature Ordered Intermetallic Alloys V”, I. Baker, R. Darolia, J.D. Whittenberger and M.H. Yoo, eds., Mat. Res. Soc. Symp. Vol. 288, Materials Research Society, Pittsburgh, p. 171. Google Scholar
  245. Wu, Z.L., Pope, D.P., and Vitek, V., 1990, Scripta Metall. 24:2191; 1994, Philos. Mag. A 70:159.ADSCrossRefGoogle Scholar
  246. Xie, Z.Y., Vailhe, C, and Farkas, D., 1993, Mat. Set Eng. A 170:59.CrossRefGoogle Scholar
  247. Yamaguchi, M., and Inui, H., 1992, in “Ordered Intermetallics – Physical Metallurgy and Mechanical Behaviour”, C.T. Liu, R.W. Cahn and G. Sauthoff, eds., Kluwer Academic Publishers, Dodrecht, The Netherlands, p. 217.Google Scholar
  248. Yamaguchi, M., Inui, H., Kishida, K., Matsumoro, M., and Shirai, Y., 1995, in “High-Temperature Ordered Intermetallic Alloys VI”, J. Horton, I. Baker, S. Hanada, R.D. Noebe and D. Schwartz, eds., Mat. Res. Soc. Symp. Vol. 364, Materials Research Society, Pittsburgh, p. 3. Google Scholar
  249. Yamaguchi, M., Paidar, V., Pope, D.P., and Vitek, V., 1982, Philos. Mag. A 45:867.ADSCrossRefGoogle Scholar
  250. Yamaguchi, M., and Umakoshi, Y., 1975, Scripta Metall. 9:637.CrossRefGoogle Scholar
  251. Yamaguchi, M., Vitek, V., and Pope, D.P., 1981, Philos. Mag. A 43:1027.ADSCrossRefGoogle Scholar
  252. Yan, M., Šob, M., Luzzi, D.E., Vitek, V., Ackland, G.J., Methfessel, M., and Rodriguez, CO., 1993, Phys. Rev. B 47:5571.CrossRefGoogle Scholar
  253. Yin, M.T., and Cohen, M.L., 1982, Phys. Rev. B 26:5668; 1984, Phys. Rev. B 29:6996.CrossRefGoogle Scholar
  254. Yoo, M.H., Daw, M.S., and Baskes, M.I., 1989, in “Atomistic Simulations of Materials: Beyond Pair Potentials”, V. Vitek and D. Srolovitz, eds., Plenum Press, New York, p. 401.Google Scholar
  255. Yoo, M.H., Sass, S.L., Fu, C.L., Mills, M.J., Dimiduk, D.M., and George, E.P., 1993, Acta Metall Mater. 41:987.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • V. Vitek
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations