New Tight-Binding Methodology for Calculating Total Energies of Solids

  • D. A. Papaconstantopoulos
  • M. J. Mehl
Part of the NATO ASI Series book series (NSSB, volume 355)


Recently1–3 we have introduced a tight-binding (TB) methodology for efficiently calculating the total energy of crystals. The method is based on a TB fit of both the energy bands and the total energies resulting from first-principles calculations. The value of the method rests in the fact that the TB parameters are determined from simple high symmetry crystal structures, and then used in an interpolative manner to compute the total energy of low symmetry structures such as those needed for the evaluation of elastic constants and phonon frequencies. This approach leads to computations that are orders of magnitude faster than those of first-principles density functional studies such as augmented plane wave (APW) calculations, with little loss of accuracy.


Local Density Approximation Augmented Plane Wave Phonon Dispersion Curve Vacancy Formation Energy Single Crystal Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.E. Cohen, M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev. B50, 14694 (1994).ADSGoogle Scholar
  2. 2.
    MJ. Mehl and D.A. Papaconstantopoulos, Europhys. Lett. 31, 537 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev., to be published.Google Scholar
  4. 4.
    D.A. Papaconstantopoulos, “Handbook of the Band Structure of Elemental Solids,” Plenum Press, New York, 1986.Google Scholar
  5. 5.
    L. Goodwin, A J. Skinner and D.G. Pettifor, Europhys. Lett. 9, 701 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    W. Zhong, Y.S. Li and D. Tomanek, Phys. Rev. B44, 13053 (1991).ADSGoogle Scholar
  7. 7.
    C.H. Zu, CZ. Wang, C.T. Chan and K.M. Ho, J. Phys. Condens. Matter 4, 6047 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    M.M. Sigalas and D.A. Papaconstantopoulos, Phys. Rev. B49, 1574 (1994).ADSGoogle Scholar
  9. 9.
    J.M. Mercer, Jr. and M.Y. Chou, Phys. Rev. B47, 9366 (1993); Phys. Rev. B49, 8506 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    M. Menon, J. Connolly, N. Lathiotakis and A. Andriotis, Phys. Rev. B50, 8903 (1994); Europhys. Lett. 29, 135 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Mehl, D.A. Papaconstantopoulos and R.E. Cohen, Intern. J. Thermophysics 16, 67 (1995).Google Scholar
  12. 12.
    S.M. Foiles, M.I. Baskes and M.S. Daw, Phys. Rev. B33, 7983 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Mehl, B.M. Klein and D.A. Papaconstantopoulos, in “Intermetallic Compounds: Principles and Applications”, eds. J.H. Westbrook and R.L. Fleischer, (John Wiley & Sons, Ltd., London, 1994)Google Scholar
  14. 14.
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd Edition, (MIT Press, Cambridge, MA, 1971).Google Scholar
  15. 15.
    Y. Nakagawa and A.D.B. Woods, Phys. Rev. Lett, 11, 271 (1963).ADSCrossRefGoogle Scholar
  16. 16.
    H.-E. Schaefer, Phys. Stat. Sol. A 102, 47 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    M.I. Baskes, Phys. Rev. B46, 2727 (1992).ADSGoogle Scholar
  18. 18.
    W.R. Tyson and W.A. Miller, Surf. Sci. 62, 267 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • D. A. Papaconstantopoulos
    • 1
  • M. J. Mehl
    • 1
  1. 1.Complex Systems Theory Branch Naval Research LaboratoryUSA

Personalised recommendations