Skip to main content

Classical and First Principles Molecular Dynamics Simulations in Material Science: Application to Structural and Dynamical Properties of Free and Supported Clusters

  • Chapter
Stability of Materials

Part of the book series: NATO ASI Series ((NSSB,volume 355))

Abstract

The increasing availability of powerful computers has an enormous impact on the solution of a large variety of problems in modern physics and chemistry. Molecular Dynamics (MD) is particularly attractive since it provides an atomic-scale description of the dynamics of complex systems. This is achieved by exploiting the equivalence between thermodynamic quantities and time averages of appropriate variables of coordinates and velocities. In the context of material science topics, Molecular Dynamics has now achieved a firmly established role of useful tool which complements experimental findings, predicts behaviors not accessible to experiments and elucidates mechanisms which can only be understood by analyzing the atomic movements. In principle, the level of detail and accuracy of MD is only limited by the reliability of the model employed. This is a crucial issue which necessitates some historical remarks. As it was nicely described in the introductory paper of one of the first international conferences devoted to the applications of molecular dynamics to condensed matter problems [1], MD simulations began as a method aimed at testing statistical mechanics theories. Simple model potentials were employed with the intent of investigating generic static and dynamic properties of monoatomic fluids. The border between statistical mechanics and material science, giving rise to simulations more oriented toward complex systems featuring both fundamental and technological interest, was crossed in the early seventies with simulations of ionic solids and liquids for which the coulombic interaction is largely predominant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.W. Wood. Early history of computer simulations in statistical mechanics. In G. Ciccotti and W. G. Hoover, editors, Molecular dynamics Simulations of Statistical-Mechanics Systems., page 3. North Holland, Amsterdam, 1986.

    Google Scholar 

  2. V. Vitek and D. J. Srolovitz, editors. Atomistic Simulation of Materials, beyond pair potentials. Plenum Press, New York and London, 1989.

    Google Scholar 

  3. S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81:511, 1984.

    Article  ADS  Google Scholar 

  4. W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. B, 31:1695, 1985.

    ADS  Google Scholar 

  5. M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appi. Phys., 52:7158, 1981.

    Article  Google Scholar 

  6. R. Car and M. Parrinello. Uniform approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 55:2471, 1985.

    Article  ADS  Google Scholar 

  7. G. Ciccotti and W. G. Hoover, editors. Molecular Dynamics Simulation of Statistical-Mechanical Systems. North Holland, Amsterdam, 1986.

    Google Scholar 

  8. J.P.Hansen and LR. McDonald. Theory of simple liquids.Academic Press, London, 1986.

    Google Scholar 

  9. M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, 1986.

    Google Scholar 

  10. G. Ciccotti, D. Frenkel, and L R. McDonald. Simulation of Liquids and Solids. North Holland, Amsterdam, 1987.

    Google Scholar 

  11. C.R.A. Catlow, S.C. Parker, and M.P. Allen, editors. Computer Modeling of Fluids, Polymers and Solids., volume 293 of NATO ASI series C Kluwer. Dordrecht, 1990.

    Google Scholar 

  12. M. Meyer and V. Pontikis, editors.Computer Simulation in Material Science. volume 205 of NATO ASI series E Kluwer. Dordrecht, 1991.

    Google Scholar 

  13. M.P. Allen and D.J. Tildesley, editors. Computer Simulation in Chemical Physics., volume 397 of NATO ASI series C Kluwer. Dordrecht, 1993.

    Google Scholar 

  14. G. Galli and A. Pasquarello. First principles molecular dynamics.In M. P. Allen and D. J. Tildesley, editors, Computer Simulation in Chemical Physics, volume 397 of NATO ASI series C Kluwer. Dordrecht, 1993.

    Google Scholar 

  15. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Iterative minimization techniques for ab-initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045, 1993.

    Article  ADS  Google Scholar 

  16. D.K. Render and P.A. Madden. Molecular dynamics without effective potentials via the car-parrinello approach. Mol. Phys., 70:921, 1992.

    ADS  Google Scholar 

  17. L. Verlet. Computer “experiments” on classical fluids, i. thermodynamical properties of lennard-jones molecules. Phys. Rev., 159:98, 1967.

    Article  ADS  Google Scholar 

  18. P.E. Blöchl and M. Parrinello. Adiabaticity in first-principles molecular dynamics. Phys. Rev. B, 45:9413, 1992.

    Article  ADS  Google Scholar 

  19. A.P. Sutton, J.B. Pethica, H. Rafii-Tabar, and J.A. Nieminen. Electron Theory In Alloy Design, chapter Mechanical properties of metals at the nanometre scale. London: The Institute of Materials, 1992.

    Google Scholar 

  20. A.E. Carlsson. Beyond pair potentials in elemental transition metals and semicon¬ductors. In Henry Ehrenreich and David Turnbull, editors, Solid State Physics 43, volume 43. 1990.

    Google Scholar 

  21. K.W. Jacobsen, J.K. Norskov, and M.J. Puska. Interatomic interactions in the effective-medium theory. Phys. Rev. B, 35:7423, 1987.

    Article  ADS  Google Scholar 

  22. F. Ercolessi, E. Tosatti, and M. Parrinello. Au(100) surface reconstruction. Phys. Rev. Lett, 57:719, 1986.

    Article  ADS  Google Scholar 

  23. M.W. Finnis and J.E. Sinclair. A simple empirical n-body potential for transition metals. Phil. Mag. A, 50:45, 1984.

    Article  ADS  Google Scholar 

  24. V. Rosato, M. Guillope, and B. Legrand. Thermodynamical and structural prop¬erties of fee transition metals using a simple tight-binding model. Phil Mag. A, 59:321, 1989.

    Article  ADS  Google Scholar 

  25. N. Chetty, K. Stokbro, K.W. Jacobsen, and J.K. Nørskov. Ab-initio potentials for solids. Phys. Rev. B, 46:3798, 1992.

    Article  ADS  Google Scholar 

  26. S.M. Foiles, M.I. Baskes, and M.S. Daw. Embedded-atom-method functions for the fee metals cu, ag, au, ni, pd, pt, and their alloys. Phys. Rev. B, 33:7983, 1986.

    Article  ADS  Google Scholar 

  27. P.J. Feibelman. Diffusion barrier for ag adatom on pt(lll). Surf. Sci., 313:L801, 1994.

    Article  ADS  Google Scholar 

  28. J.K. Nørskov. Covalent effects in the effective medium theory of chemical binding: Hydrogen heats of solution in the 3d metals. Phys. Rev. B, 26:2875, 1982.

    Article  ADS  Google Scholar 

  29. M.I. Baskes, S.M. Foiles, and C.F. Melius. Dynamical calculation of low energy hydrogen reemission off hydrogen covered surfaces. Nucl. Mater., 145–147:339, 1987.

    Article  Google Scholar 

  30. A.E. Carlsson, P.A. Fedders, and Charles W. Myles. Generalized embedded-atom format for semiconductors. Phys. Rev. B, 41:1247, 1990.

    Google Scholar 

  31. M.I. Baskes. Application of the embedded-atom method to covalent materials: A semi-empirical potential for silicon. Phys. Rev. Lett., page 2666, 1987.

    Google Scholar 

  32. Murray S. Daw and M.I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals. Phys. Rev. B, 29:6443, 1984.

    Article  ADS  Google Scholar 

  33. James H. Rose, John R. Smith, Francisco Guinea, and John Ferrante. Universal features of the equation of state of metals. Phys. Rev. B, 29:2963, 1984.

    Article  ADS  Google Scholar 

  34. Enrico Clementi and Carla Roetti. Roothaan-hartree-fock atomic wave functions, basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, z ≤ 54. Atomic Data and Nuclear Data Tables, 14:177, 1974.

    Article  ADS  Google Scholar 

  35. A.D. McLean and R.S. McLean. Roothaan-hartree-fock atomic wave functions slater basis set expansions for z = 55–92. Atomic Data and Nuclear Data Tables, 26:197, 1981.

    Article  ADS  Google Scholar 

  36. M.J. Puska, R.M. Nieminen, and M. Manninen. Atoms embedded in an electron gas: Immersion energies. Phys. Rev. B, 24:3037, 1981.

    Article  ADS  Google Scholar 

  37. C. Massobrio and P. Blandin. Structure and dynamics of ag clusters on pt(lll). Phys. Rev. B, 47:13687, 1993.

    Article  ADS  Google Scholar 

  38. D.W. Basset and P.R. Webber. Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces. Surf. Sci., 70:520, 1978.

    Article  ADS  Google Scholar 

  39. S.C. Wang and Gert Ehrlich. Structure, stability and surface diffusion of clusters: irx/ir(lll). Surf. Sci., 239:301, 1990.

    Article  ADS  Google Scholar 

  40. L. Hansen, P. Stoltze, K.W. Jacobsen, and J.K. Nørskov. Self-diffusion on copper surfaces. Phys. Rev. B, 44:6523, 1991.

    Article  ADS  Google Scholar 

  41. W.K. Rilling, CM. Gilmore, T.D. Andreadis, and J.A. Sprague. An embedded-atom-method study of diffusion of an ag adatom on (111) ag. Can. J. Phys., 68:1035, 1990.

    Article  ADS  Google Scholar 

  42. Holger Röder. Microscopic processes in heteroepitaxial growth: nucleation, growth and alloying of silver on the (111) surface of platinum. Thèse 1288, Lausanne, EPFL, 1994.

    Google Scholar 

  43. Michael I. Haftel. Surface reconstruction of platinum and gold and the embedded-atom model. Phys. Rev. B, 48:2611, 1993.

    Article  ADS  Google Scholar 

  44. P. Blandin and P. Ballone. Diffusion of metal adatom on compact metal surfaces in the presence of defects and impurities. Surf. Sci., to be published.

    Google Scholar 

  45. J.K. Nørskov. Chemisorption on metal surfaces. Rep. Prog. Phys., 53:1253, 1990.

    Article  ADS  Google Scholar 

  46. R.J. Madix, G. Erti, and K. Christmann. Preexponential factors for hydrogen desorption from single crystal metal surfaces. Chem. Phys. Lett., 62:38, 1979.

    Article  ADS  Google Scholar 

  47. W. Eberhardt, F. Greuter, and E. W. Plummer. Bonding of h to ni, pd and pt surfaces. Phys. Rev. Lett, 46:1085, 1981.

    Article  ADS  Google Scholar 

  48. R.W. McCabe and L.D. Schmidt. Binding states of co and h2 on clean and oxidized (111) pt. Surf. Sci., 65:181, 1977.

    Article  ADS  Google Scholar 

  49. Martin Zinke-Allmang, Leonard C.Feldman, and Marcia H. Grabow. Clustering on surfaces. Surf. Sci. Reports, 16:377, 1992.

    Article  ADS  Google Scholar 

  50. Christoph Romainczyk. Struktur und kinetic von reinen und silberbedeckten plati-noberflächen. Thèse 1289, Lausanne, EPFL, 1994.

    Google Scholar 

  51. P. Blandin, C. Massobrio, and P. Ballone. Nucleation and growth of metallic submonolayers on compact metal surfaces. Phys. Rev. B, 49:16637, 1994.

    Article  ADS  Google Scholar 

  52. H. Röder, R. Schuster, H. Brune, and K. Kern. Monolayer-confined mixing at the ag — pt(lll) interface. Phys. Rev. Lett., 71:2086, 1993.

    Article  ADS  Google Scholar 

  53. W.A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Rev. of Modern Phys., 65:611, 1993.

    Article  ADS  Google Scholar 

  54. K.A. Jackson. First principles study of the structural and electronic properties of cu clusters. Phys. Rev. B, 47:9715, 1993.

    Article  ADS  Google Scholar 

  55. U. Rothlisberger and W. Andreoni. Structural and electronic properties of sodium microclusters (n=2–20) at low and high temperatures: New insight from ab-initio molecular dynamics studies. J. Chem. Phys., 94:8129, 1991.

    Article  ADS  Google Scholar 

  56. D. Vanderbilt. Soft self-consistent pseudopotetials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, 1990.

    Article  ADS  Google Scholar 

  57. A. Pasquarello, K. Laasonen, R. Car, C. Lee, and D. Vanderbilt. Ab-initio molecular dynamics for d-electron systems: liquid copper at 1500k. Phys. Rev. Lett., 69:1982, 1992.

    Article  ADS  Google Scholar 

  58. K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Phys. Rev. B, 47:10142, 1993.

    Article  ADS  Google Scholar 

  59. J.P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:5048, 1981.

    Article  ADS  Google Scholar 

  60. V. Bonacic-Koutecky, L. Cespiva, P. Fantucci, and J. Koutecky. Effective core potential-configuration interaction study of electronic structure and geometry of small neutral and cationic agn clusters: Predictions and interpretation of measured properties. J. Chem. Phys., 98:7981, 1993.

    Article  ADS  Google Scholar 

  61. V. Bonacic-Koutecky, J. Pittner, C. Scheuch, M.F. Guest, and J. Koutecky. Quantum molecular interpretation of the adsorption spectra of na5, na6, and na7 clusters. J. Chem. Phys., 96:7938, 1992.

    Article  ADS  Google Scholar 

  62. V. Bonacic-Koutecky, P. Fantucci, and J. Koutecky. Systematic ab-initio configuration-interaction study of alkali-metal clusters, ii. relation between electronic structure and geometry of small sodium clusters. Phys. Rev. B, 37:4369, 1988.

    Article  ADS  Google Scholar 

  63. I. Moullet, J.L. Martins, F. Reuse, and J. Buttet. Static electric polarizabilities of sodium clusters. Phys. Rev. B, 42:11598, 1990.

    Article  ADS  Google Scholar 

  64. C. Massobrio, A. Pasquarello, and R. Car. Structural and electronic properties of small copper clusters: a first principle study. Chem. Phys. Lett., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Massobrio, C., Blandin, P. (1996). Classical and First Principles Molecular Dynamics Simulations in Material Science: Application to Structural and Dynamical Properties of Free and Supported Clusters. In: Gonis, A., Turchi, P.E.A., Kudrnovský, J. (eds) Stability of Materials. NATO ASI Series, vol 355. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0385-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0385-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8028-3

  • Online ISBN: 978-1-4613-0385-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics