Skip to main content

Lamb Waves Propagation in Aluminum Honeycomb Structures

  • Chapter

Abstract

Honeycomb sandwich, formed by adhesively bonding metallic or non-metallic thin plates with honeycomb core, is one of the composites used extensively in the industry. The common types of honeycomb cores presently being produced are aramid fiber reinforced, glass fiber, and the metallic core such as titanium, corrosion resistant steel and aluminum. The facing materials are usually aluminum, fiberglass or carbon fibre laminates. With the core carrying the shear loads and skins carrying the bending load the honeycomb panel enjoys many applications in the aerospace industries and have been found in many structural components due to their extremely light weight, high stiffness and strength-to-weight ratio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guyott, C.C.H, Cawley, P. and Adams, R.D., 1986, J. Adhesion, vol.20, pp129–159.

    Article  Google Scholar 

  2. Cawley, P and Adams, R., 1988, NDT Int., vol.21, pp208–222.

    Article  Google Scholar 

  3. Rose, J.L. and Ditri, J.J., 1992, Brit. J. NDT, vol.34, pp591–594.

    Google Scholar 

  4. Guo, N. and Cawley, P., 1993, J. Acoust. Soc. Am., vol. 94(4), pp2240–2246.

    Article  Google Scholar 

  5. Chimenti, D.E. and Nayfeh, A.H., 1985, J. Appl. Phys., vol.58, pp4531–4538.

    Article  Google Scholar 

  6. Rokhlin, S.I., 1991, J. Acoust. Soc. Am., vol. 89, pp2758–2765.

    Article  Google Scholar 

  7. Lowe, M.J.S. and Cawley, P., 1994, J.NDE, vol. 13(4), pp185–200.

    Google Scholar 

  8. Guo, N. and Cawley, P., 1994, Mate. Eval., vol. 52(3), pp404–411.

    Google Scholar 

  9. Nayfeh, A.H. and Chimenti, D.E., 1988, J. Appl. Mech., vol.55, pp863–870.

    Article  Google Scholar 

  10. Mal, A.K., 1988, Wave Motion, vol.10, pp257–266.

    Article  MATH  Google Scholar 

  11. Lowe, M.J.S. and Cawley, P., 1995, J. Acoust. Soc. Am., vol.97, ppl625–1637.

    Google Scholar 

  12. Guo, N., Lim, M.K. and Lowe, M.J.S., 1995, “Leak Lamb waves propagation in honeycomb structures”, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Guo, N., Lim, M.K. (1996). Lamb Waves Propagation in Aluminum Honeycomb Structures. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0383-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0383-1_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8027-6

  • Online ISBN: 978-1-4613-0383-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics