Skip to main content

A New Technique for Distinguishing Internal Voids from Solid Inclusions

  • Chapter
  • 31 Accesses

Abstract

An acoustic microscope has been proven to be a very effective tool for visualization and characterization of small internal defects in solids[l]. The distinction of internal defects such as cracks and voids from solid inclusions is sometimes necessary for material evaluation. For example in case of light metal casting alloys ultrasonic scattered echo from pores and heavy metal inclusions used for strengthening purposes can give the ultrasonic signal of the same order of magnitude [2]. In this paper it is shown how the phase information of the reflected echo can be used to distinguish void signals from solid inclusion signals. Conventional acoustic imaging techniques that use only amplitude information and ignores the phase information can not distinguish between voids and inclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Briggs, “Acoustic Microscopy”, Clarendon Press, Oxford, 1992.

    Google Scholar 

  2. J. Krautkramer, H. Krautkramer “Ultrasonic testing of materials” Springer-Verlag, Berlin Heidelberg, N.Y. 1983., p. 536.

    Google Scholar 

  3. L.M. Brekhovskikh, “Waves in layered media” Academic Press, N.Y., 1960.

    Google Scholar 

  4. W. A. Simpson Jr., “Time-Frequency-Domain Formulation of Ultrasonic Frequency Analysis”, J. Acoust. Soc. Am. 5 (6) pp. 1776–1781, (1974).

    Article  Google Scholar 

  5. D.E. Fitting, L. Adler, “Ultrasonic Spectral Analysis for Nondestructive Evaluation”, Plenum, N.Y. 1981, pp. 106–109.

    Google Scholar 

  6. N. Nakaso, K. Ohira, M. Yanaka, Y. Tsukahira, “Measurement of acoustic reflection coefficient by an ultrasonic microspectrometer”, IEEE trans, ultrason, ferroelectr. Freq. Control, 41 (4) pp. 494–502, (1994).

    Article  Google Scholar 

  7. C.F. Ying and R. Truell, “Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid”, J. Appl. Phys. 27, pp. 1086–1097, (1956).

    Article  MathSciNet  MATH  Google Scholar 

  8. N.G. Einspruch, E.J. Witterholt and R. Truell, “Scattering of a plane transverse wave by a sphrrical obstacle in an elastic medium”, J. Appl. Phys., 31, pp.806–818 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  9. J.E. Gubernatis, E. Domany, J. A. Krumhansl, M. Huberman, “The Born Approximation in the Thery of the Scattering of Elastic Waves by Flaws”, J.of Appl. Phys., 48 (7), pp.2812–2819 (1977).

    Article  Google Scholar 

  10. B.R. Tittmann, R.E. Cohen. J.M. Rochardson, “Scattering of Longitudinal Waves I ncident on Spherical Cavity in a Solid”, J. Acoust. Soc. Am. 63 (1) pp. 68–74, (1978).

    Article  Google Scholar 

  11. A. Stockmann, P.S. Nocholson, “Ultrasonic Characterization of Model Defects in Ceramics—Voids in Glass—Theory and Practice”, Mat. Eval., 44, pp.756–761, (1986).

    Google Scholar 

  12. A. Stockmann, P. Mathieu, P.S. Nocholson, “Ultrasonic Characterization of Model Defects in Ceramics (part 3). Spherical Inclusion in Opaque Crystallized Glass — Theory and Practice, Materials Evaluation”, 47 (3) pp. 356–362, (1989).

    Google Scholar 

  13. O.I. Lobkis and P.V. Zinin, “Acoustic microscopy of spherical objects. Theoretical approach”, Acoust. Lett. 14, 168–172,(1991).

    Google Scholar 

  14. O.I. Lobkis, T. Kundu, and P.V. Zinin “A theoretical analysis of acoustic microscopy of spherical cavities”. Wave Motion 21, pp. 183–201, (1995).

    Article  MATH  Google Scholar 

  15. L. Paradis, J.F. Salin, “Non destructive evaluation of the mechanical characteristics of plasma sprayed ceramic coatings” in Review of progress in quantitative nondestructive evaluation, 13B eds. D.O. Thompson and D.E. Chimenti, Plenum N.Y. 1994, pp. 1229–1236.

    Google Scholar 

  16. O.V. Kolosov, O.I. Lobkis, K.I. Maslov, P.V. Zinin, “The effect of the focal plane position on the images of spherical objects in the reflection acoustic microscope”, Acoust. Lett. 16, pp. 84–88 (1992).

    Google Scholar 

  17. O.I. Lobkis, K.I. Maslov, T. Kundu, P.V. Zinin, “Spherical Inclusion Characterization by the Acoustic Microscope: Axisymmetric Case”, J. Acoust. Soc. Am, in press (1995).

    Google Scholar 

  18. Y. Sasaki, T. Endo, T. Yamagishi and M. Sakai, “Thickness measurement of a thin film layer on an anisotropic substrate by phase-sensitive acoustic microscope”, IEEE Trans. UFFC. 39, pp. 638–642 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Maslov, K.I., Kundu, T., Lobkis, O.I. (1996). A New Technique for Distinguishing Internal Voids from Solid Inclusions. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0383-1_115

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0383-1_115

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8027-6

  • Online ISBN: 978-1-4613-0383-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics