Chemical Non-Destructive Evaluation at the Center for Process Analytical Chemistry

  • B. R. Kowalski
  • J. E. Koch

Abstract

The chemical discipline of Process Analytical Chemistry focuses on new sensors and analyzers capable of acquiring quantitative chemical information from a process via online, in-line and non-invasive approaches. This is opposed to off-line or at-line methods that lead to sampling problems, time delays, and in general, an inability to control and optimize chemical processes. The Center for Process Analytical Chemistry (CPAC) at the University of Washington has long recognized that the preferred approach to process analysis is non-invasive and has pioneered a variety of process analyzers and associated multivariate data analysis tools to exploit the relatively few physical and chemical phenomena available to the non-invasive approach. This work is similar to research at the Center for Non-Destructive Evaluation (NDE) except that the CPAC emphasis is on quantitative chemical information. Both centers are Industry/University Cooperative Research Centers initiated by grants from the National Science Foundation. This report will include topics on non-invasive analysis, or chemical NDE, selected from the CPAC research program. Additionally, the chosen topics represent a progression from the standard spectral measurements to more complex combinations of both spectral and spatial information. The combination of spectral and spatial domains has been, in part, facilitated by the development of chemometric techniques geared towards handling complex multidimensional data sets. The first topic involves extracting both chemical and physical information from infrared emission (IRE) spectra using multivariate methods from the field of chemometrics.

Keywords

Surfactant fIltering Polyethylene Polystyrene Vinyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Pell, J. B. Callis, and B. R. Kowalski, Appl. Spec. 45, 5 (1991).CrossRefGoogle Scholar
  2. 2.
    R. J. Pell, “Chemometrics and Infrared Emission Spectroscopy for Remote Analysis”, Ph.D. Thesis, University of Washington, 1990.Google Scholar
  3. 3.
    C. L. Putzig, M. A. Leugers, M. L. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, and L. Yurga, Anal. Chem. 66, 26R (1994).Google Scholar
  4. 4.
    C. L. Putzig, M. A. Leugers, M. L. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, and L. Yurga, Anal. Chem. 64, 270R (1992).Google Scholar
  5. 5.
    J. B. Callis, D. L. Illman, and B. R. Kowalski, Anal. Chem. 59, 624A-637A (1987).CrossRefGoogle Scholar
  6. 6.
    K. R. Beebe, W. W. Blaser, R. A. Bredeweg, J. P. Chauvel, Jr., R. S. Harner, M. LaPack, A. Leugers, D. P. Martin, L. G. Wright, and E. D. Yalvac, Anal. Chem. 65, 199R (1993).CrossRefGoogle Scholar
  7. 7.
    S. D. Brown, T. B. Blank, S. T. Sum, and L. G. Weyer, Anal. Chem. 66, 315R (1994).CrossRefGoogle Scholar
  8. 8.
    R. J. Pell, C. E. Miller, B. R. Kowalski, J. B. Callis, Appl. Spec. 47, 12 (1993).CrossRefGoogle Scholar
  9. 9.
    R. J. Pell, B. C. Erickson, R. W. Hannah, J. B. Callis, and B. R. Kowalski, Anal. Chem. 60, 2824 (1988).CrossRefGoogle Scholar
  10. 10.
    G. Zhihong, A. G. Cavinato, and J. B. Callis, Anal. Chem. 66, 1354 (1994).CrossRefGoogle Scholar
  11. 11.
    P. K. Aldridge, J. J. Kelly, J. B. Callis, and D. H. Burns, Anal. Chem. 65, 3581 (1993).CrossRefGoogle Scholar
  12. 12.
    J. B. Callis, personal communication with J. B. Callis (1995).Google Scholar
  13. 13.
    W. H. A. M. van den Broek, J. C. A. Kraak, D. Wienke, W. J. Meissen, and L. Buydens, 4th Scandanavian Symposium on Chemometrics, Lund, Sweden June 12–16 (1995).Google Scholar
  14. 14.
    P. Cooke, Anal. Chem. 66, 558R (1994).Google Scholar
  15. 15.
    P. Robert, D. Bertrand, M. F. Devaux, and A. Sire, Anal. Chem. 64, 664 (1992).CrossRefGoogle Scholar
  16. 16.
    P. L. Geladi, K. H. Esbensen, and S. Wold, Anal. Chim. Acta. 191, 473 (1986).CrossRefGoogle Scholar
  17. 17.
    P. L. Geladi, and K. H. Esbensen, J. Chemom. 3, 419 (1989).CrossRefGoogle Scholar
  18. 18.
    Y. Wang, O. S. Borgen, and B. R. Kowalski, J. Chemom. 7, 117 (1993).CrossRefGoogle Scholar
  19. 19.
    Proc. Int. Symp. on Remote Sensing of the Environment, San Francisco, 1–4 April 1985.Google Scholar
  20. 20.
    J. Brown, P. Footner, and B. Richards, J. Micosc. 148, 179 (1987).CrossRefGoogle Scholar
  21. 21.
    H. F. Grahn, N. Szeverenyi, M. Roggenbuck, F. Delaglio, and P. L. Geladi, Chemometrics Intell. Lab. Syst. 5, 311 (1989).CrossRefGoogle Scholar
  22. 22.
    H. F. Grahn and J. Saaf, Chemometrics Intell. Lab. Syst. 14, 391 (1992).CrossRefGoogle Scholar
  23. 23.
    P. L. Geladi, Chemometrics Intell. Lab. Syst. 14, 375 (1992).CrossRefGoogle Scholar
  24. 24.
    P. L. Geladi and K. H. Esbensen, J. Chemom. 5, 97 (1991).CrossRefGoogle Scholar
  25. 25.
    K. H. Esbensen, P. L. Geladi, and H. F. Grahn, Chemometrics Intell. Lab. Syst. 14, 357 (1992).CrossRefGoogle Scholar
  26. 26.
    P. Williams and K. Norris, Near-infrared Technology in the Agricultural and Food Industries (American Association of Cereal Chemists, 1987).Google Scholar
  27. 27.
    J. P. Smith, US Patent No. 5,311,131 (10 May 1994).Google Scholar
  28. 28.
    B. R. Kowalski and B. J. Reilly, J. Phys. Chem. 75, 140 (1971).Google Scholar
  29. 29.
    M. A. Sharaf, D. L. Illman, and B. R. Kowalski, Chemometrics (John Wiley and Sons, 1986).Google Scholar
  30. 30.
    S. L. Howells, R. J. Maxwell, A. C. Peet, and J. R. Griffiths, Magn. Reso. Med. 28, 214 (1992).CrossRefGoogle Scholar
  31. 31.
    J. P. Smith and J. E. Koch, in Supplement to Radiology, Vol. 193(P) p. 479 (1994).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • B. R. Kowalski
    • 1
  • J. E. Koch
    • 1
  1. 1.Center for Process Analytical Chemistry (CPAC)University of WashingtonSeattleUSA

Personalised recommendations