Neuroprotective Effects of Melatonin

  • M. Lipartiti
  • D. Franceschini
  • R. Zanoni
  • M. Gusella
  • P. Giusti
  • C. M. Cagnoli
  • A. Kharlamov
  • H. Manev
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 398)

Abstract

The full range of physiological actions of melatonin is not completely known. In mammals, it modulates gonadal function and regulates biological rhythms. Furthermore, it has also been reported to have anxyolitic, sedative, and anticonvulsant properties, both in human and animals. Recently it has been shown that melatonin is a potent, endogenous hydroxyl radical scavenger suggesting that it might interfere with neurodegenerative processing involving free-radical formation and excitatory amino acid release. Using primary cultures of rat cerebellar neurons and in vivo models of brain injury in rats, we demonstrate that melatonin might be considered an endogenous neuroprotective factor useful for the pharmacological treatment of neurological disorders and neural degeneration produced by glutamate excitotoxicity and oxidative stress.

Keywords

Toxicity Ischemia Toluene Superoxide Serotonin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, G.M., Pulido, O., and Niles, L.P., 1983, Differential localization of melatonin and N-acetyl serotonin in brain, in:“The pineal gland and its endocrine role”, J. Axelrod, F. Fraschini, and G.P. Velo, eds., Plenum Press, New York.Google Scholar
  2. Cagnoli, C.M., Atabay, C., Kharlamov, E., and Manev, H., 1995, Melatonin protecs neurons from singlet oxigen-induced apoptosis, J. Pineal Res., in pressGoogle Scholar
  3. Champney, T. H., & Champney, J.-A. C., 1992, Novel anticonvulsant action of chronic melatonin in the gerbil, Neuro. Report, 3: 1152.Google Scholar
  4. Choi, D. W., 1988, Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1: 623.CrossRefGoogle Scholar
  5. Chuang, J.I., & Lin M.T., 1994, Pharmacological effects of melatonin treatment on both locomotor activity and brain serotonin release in rats, J. Pineal Res, 17: 11.CrossRefGoogle Scholar
  6. Dykens, J.A., Stern, A., Trenker, E., 1987, Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem, 49: 1222.CrossRefGoogle Scholar
  7. Giusti, P., Gusella, M., Lipartiti, M., Milani, D., Zhu, W., Vicini, S., and Manev, H., 1995, Melatonin protects primary cultures of cerebellar granule neurons from kainate but not from N-methyl-d-aspartate excitotoxicity, Exp. Neurol., 131: 39.CrossRefGoogle Scholar
  8. Golombek, D.A., Martini M., and Cardinali, D.P., 1993, Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system., Eur. J Pharmacol, 237: 231.CrossRefGoogle Scholar
  9. Gotz, M.E., Kunig G., Riederer, P., and Youdim, M.B.H., 1994, Oxidative stress: free radical production in neural degeneration, Pharmac. Ther, 63: 37.CrossRefGoogle Scholar
  10. Gusella, M., Lipartiti, M., Franceschini, D., Manev, H., and Giusti, P., 1995, Melatonin protects from kainate-induced neurotoxicity in cerebellar granule cells, Behav. Pharmacol, 6 (suppl.l): 98.CrossRefGoogle Scholar
  11. Lipton, S.A., and Rosemberg, P.A., 1994, Excitatory amino acids as a final common pathway for nerological disorders, New England J. Med, 330: 613.CrossRefGoogle Scholar
  12. Manev., H., Kharlamov, A., and Armstrong, D., 1994, Photochemical brain injury in rats triggers DNA fragmentation, p53 and HSP72, Neuro. Report, 5: 2661.Google Scholar
  13. Manev., H., Cagnoli, C.M., Atabay, C., Kharlamov, E., Ikomonovic, M.D., and Grayson, D.R., 1995, Neuronal apoptosis in an in vitro model of photochemically induced oxidative stress, Exp. Neurol., 133: in press.Google Scholar
  14. Mattson, M.P., & Scheff, S.W., 1994, Endogenous neuroprotection factors and traumatic brain injury. Mechanisms of action and implications for therapy, J. Neurotrauma, 11: 3.CrossRefGoogle Scholar
  15. Nakanishi, S., 1992, Molecular diversity of glutamate receptors and implications for brain function, Science, 258: 597.CrossRefGoogle Scholar
  16. Niles L., 1991, Melatonin interaction with the benzodiazepine-GABA receptor complex in the CNS, in:“Kynurenine and serotonin pathways”, R. Schwarcz, ed, Plenum Press, New York.Google Scholar
  17. Norlund, J.J., Lerner, A.B., 1977, The effects of oral melatonin on skin color and on the release of pituitary hormones, J. Clin. Endocrinol. Metab, 45: 768.CrossRefGoogle Scholar
  18. Pellegrini-Giampietro, D. E., Cherici, E. G., Alesiani, M., Carla, V., Moroni, F., 1990, Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage, J. Neurosci, 10: 1035.Google Scholar
  19. Phillis, J.W., 1994,: A “radical” view of cerebral ischemic injury, Prog. Neurobiol. 42: 441CrossRefGoogle Scholar
  20. Puttfarcken, P. S., Getz, R. L., Coyle, J. T., 1993, Kainic acid-induced lipid peroxidation: Protection with butylate hydroxytoluene and U78517F in primary cultures of cerebellar granule cells. Brain Res., 624: 223.CrossRefGoogle Scholar
  21. Reiter, R. J., Poeggeler, B., Tan, D.-X., Chen, L. D., Manchester, L. C., and Guerrero, J. M., 1993, Antioxidant capacity of melatonin: A novel action not requiring receptors. Neuroendocrinol. Lett15: 103.Google Scholar
  22. Reiter, R. J., 1995, Oxidative processes and antioxidative defense mechanisms in the aging brain, FASEB J9: 526.Google Scholar
  23. Romijin, H. J., 1978, The pineal, a tranquilizing organ?, Life Science, 23: 2257.CrossRefGoogle Scholar
  24. Serafian, T.A., & Bredesen, D.E., 1994, Is apoptosis mediated by reactive oxygen species?, Free Rad. Res.. 21: 1.CrossRefGoogle Scholar
  25. Sperk, G., 1994, Kainic acid seizure in the rat, Progress in Neurobiology, 42: I.CrossRefGoogle Scholar
  26. Tamarkin, L., Baird, C.J., and Almeida, O.F.X., 1985, Melatonin: A coordinating signal for mammalian reproduction?, Science 227: 714.CrossRefGoogle Scholar
  27. Tan, D.-X., Chen, L.-D, Poeggeler, B., Manchester, L.C., and Russel, J. R., 1993. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocrine J., 1: 57.Google Scholar
  28. Wurtman, R. J., Axelrod, J., and Fisher, J. E., 1964, Melatonin synthesis in the pineal gland: Effect of the light mediated by the sympathetic nervous system, Science, 143: 1328.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. Lipartiti
    • 1
  • D. Franceschini
    • 1
  • R. Zanoni
    • 2
  • M. Gusella
    • 1
  • P. Giusti
    • 1
  • C. M. Cagnoli
    • 3
  • A. Kharlamov
    • 3
  • H. Manev
    • 3
  1. 1.Department of PharmacologyUniversity of PadovaPadovaItaly
  2. 2.Fidia Research LaboratoryAbano TermeItaly
  3. 3.Department of PsychiatryMedical College of Pennsylvania and Hahnemann University and Allegheny- Singer Research InstitutePittsburghUSA

Personalised recommendations