Advertisement

Accumulation of Dissolved DMSP by Marine Bacteria and its Degradation via Bacterivory

  • Gordon V. Wolfe
Chapter

Summary

Several bacterial isolates enriched from seawater using complex media were able to accumulate dimethylsulfoniopropionate (DMSP) from media into cells over several hours without degrading it. Uptake only occurred in metabolically active cells, and was repressed in some strains by the presence of additional carbon sources. Accumulation was also more rapid in osmotically-stressed cells, suggesting DMSP is used as an osmotic solute. Uptake could be blocked by inhibitors of active transport systems (2,4-dinitrophenol, azide, arsenate) and of protein synthesis (chloramphenicol). Some structural analogs such as glycine betaine and S-methyl methionine also blocked DMSP uptake, suggesting that the availability of alternate organic osmolytes may influence DMSP uptake. Stresses such as freezing, heating, or osmotic down shock resulted in partial release of DMSP back to the medium. One strain which contained a DMSP-lyase was also able to accumulate DMSP, and DMS was only produced in the absence of alternate carbon sources. Bacteria containing DMSP were prepared as prey for bacterivorous ciliates and flagellates, to examine the fate of the DMSP during grazing. In all cases, predators metabolized the DMSP in bacteria. In some cases, DMS was produced, but it is not clear if this was due to the predators or to associated bacteria in the non-axenic grazer cultures. Bacterivores may influence DMSP cycling by either modulating populations of DMSP-metabolizing bacteria, or by metabolizing DMSP accumulated by bacterial prey.

Keywords

Marine Bacterium Glycine Betaine Osmotic Solute Grazing Experiment Bacterial Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Ghany, Y. S., M. A. Ihnat, D. D. Miller, C. M. Kunin and H. H. Tong. 1993. Structure-activity relationship of glycine betaine analogs on osmotolerance of enteric bacteria. J. Med. Chem. 36: 784–489.PubMedCrossRefGoogle Scholar
  2. 2.
    Boch, J., B. Kempf and E. Bremer. 1994. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bact. 176: 5364–5371.PubMedGoogle Scholar
  3. 3.
    Byerrum, R. IL, C. S. Sato and C. D. Ball. 1956. Utilization of betaine as a methyl group donor in tobacco. Plant Physiol. 31:374–377.CrossRefGoogle Scholar
  4. 4.
    Chambers, S. and C. M. Kunin. 1985. The osmoprotective properties of urine for bacteria: the protective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars, and urea. J. Infect. Dis. 152: 1308–1316.PubMedCrossRefGoogle Scholar
  5. 5.
    Chambers, S. T., C. M. Kunin, D. Miller and A. Hamada. 1987. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J. Bact. 169: 4845–4847.PubMedGoogle Scholar
  6. 6.
    Dacey, J. W. H., G. M. King and P. S. Lobel. 1994. Herbivory by reef fishes and the production of dimethylsulfidê and acrylic acid. Mar. Ecol. Prog. Ser. 112: 67–74.CrossRefGoogle Scholar
  7. 7.
    de Souza, M. P. and D. C. Yoch. 1995. Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide producing marine isolate. Appl. Environ. Microbiol. 61: 21–26.PubMedGoogle Scholar
  8. 8.
    Diaz, M. R., P. T. Visscher and B. F. Taylor. 1992. Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Micro. Lett. 96: 61–66.CrossRefGoogle Scholar
  9. 9.
    du Vigneaud, V, A. W. Moyer and J. P. Chandler. 1948. Dimethylthetin as a biological methyl donor. J. Biol. Chem. 174:477–480.Google Scholar
  10. 10.
    González, J. M., E. B. Sherr and B. F. Sherr. 1993. Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey. Mar. Ecol. Prog. Ser. 102: 257–267.CrossRefGoogle Scholar
  11. 11.
    Iida, H., K. Nakamura and T. Tokunaga. 1985. Dimethyl sulfide and dimethyl-ß-propiothetin in shellfish. Bull. Jap. Soc. Sei. Fish. 51: 1145–1150.Google Scholar
  12. 12.
    Imhoff, J. F. 1986. Osmoregulation and compatible solutes in eubacteria. FEMS Micro. Rev. 39: 57–66.Google Scholar
  13. 13.
    Imhoff, J. F. and F. Rodriguez-Valera. 1984. Betaine is the main compatible solute of halophilic eubacteria. J. Bact. 160: 478–479.PubMedGoogle Scholar
  14. 14.
    Ishida, Y. and H. Kadota. 1967. Isolation and identification of dimethyl-ß-propiothetin from Gyrodinium cohnii. Agr. Biol. Chem. 31: 765–767.Google Scholar
  15. 15.
    Ishida, Y. and H. Kadota. 1968. Participation of dimethyl-ß-propiothetin in transmethylation reaction in Gyrodinium cohnii. Bull. Jap. Soc. Sei. Fish. 34: 699–705.Google Scholar
  16. 16.
    Kiene, R. P. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater and bacterial cultures. Appl. Environ. Microbiol. 56: 3292–3297.PubMedGoogle Scholar
  17. 17.
    Kiene, R. P. 1992. Dynamics of dimethyl sulfide and dimethylsulfoniopropionate in oceanic water samples. Mar. Chem. 37: 29–52.CrossRefGoogle Scholar
  18. 18.
    Kiene, R. P. and T. S. Bates. 1990. Biological removal of dimethyl sulfide from seawater. Nature 345: 702–705.CrossRefGoogle Scholar
  19. 19.
    Kiene, R. P. and G. Gerard. 1995. Evaluation of glycine betaine as an inhibitor of dissolved dimethylsulfoniopropionate degradation in marine waters. Mar. Ecol. Prog. Ser. 128: 121–131.CrossRefGoogle Scholar
  20. 20.
    Kondo, H. and M. Ishimoto. 1987. Thetin. Meth. Enzymol. 143: 227.CrossRefGoogle Scholar
  21. 21.
    Koo, S.-P, C. F. Higgins and I. R. Booth. 1991. Regulation of compatible solute accumulation in Salmonella typhimurium: evidence for a glycine betaine efflux system. J. Gen. Micro. 137: 2617–2625.Google Scholar
  22. 22.
    Lamark, T., O. B. Styrvold and A. R. Strom. 1992. Efflux of choline and glycine betaine from osmoregu-lating cells of Escherichia coli. FEMS Micro. Lett. 96: 149–154.CrossRefGoogle Scholar
  23. 23.
    Le Rudulier, D. and B. Perroud. 1983. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. 46: 152–159.PubMedGoogle Scholar
  24. 24.
    Ledyard, K. M. and J. W. H. Dacey. 1994. Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium. Mar. Ecol. Prog. Ser. 110: 95–103.CrossRefGoogle Scholar
  25. 25.
    Ledyard, K. M., E. F. DeLong and J. W. H. Dacey. 1993. Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch. Microbiol. 160: 312–318.CrossRefGoogle Scholar
  26. 26.
    Levasseur, M., M. D. Keller, E. Bonneau, D. D’Amours and W. K. Bellows. 1994. Oceanographic basis of a DMS-related Atlantic cod (Gadus morhua) fishery problem: blackberry feed. Can. J. Fish. Aquat. Sei. 57: 881–889.CrossRefGoogle Scholar
  27. 27.
    Maw, G. A. and V. du Vigneaud. 1948. Dimethyl-ß-propiothetin, a new methyl donor. J. Biol. Chem. 174: 381–382.PubMedGoogle Scholar
  28. 28.
    Nakajima, K. 1993. Dimethylthetin- and betaine-homocysteine methyltransferase activities from livers of fish, chicken, and mammals. Nippon Suisan Gakkaishi 59: 1389–1393.Google Scholar
  29. 29.
    Paquet, L., B. Rathinasabapathi, H. Saini, L. Zamir, D. A. Gage, Z.-H. Huang and A. D. Hanson. 1994. Accumulation of the compatible solute 3-dimethylsulfoniopropionate in sugarcane and its relatives, but not other gramineous crops. Aust. J. Plant Physiol. 21: 37–48.CrossRefGoogle Scholar
  30. 30.
    Patchett, R. A., A. F. Kelly and R. G. Kroll. 1994. Transport of glycine-betaine by Listeria monocytogenes. Arch. Microbiol. 162: 205–210.PubMedCrossRefGoogle Scholar
  31. 31.
    Peddie, B. A., M. Lever, C. M. Hayman, K. Randall and S. T. Chambers. 1994. Relationship between osmoprotection and the structure and intracellular accumulation of betaines by Escherichia coli. FEMS Micro. Lett. 120: 125–132.CrossRefGoogle Scholar
  32. 32.
    Perroud, B. and D. Le Rudulier. 1985. Glycine betaine transport in Escherichia coli: osmotic modulation. J. Bact. 161: 393–401.PubMedGoogle Scholar
  33. 33.
    Pocard, J.-A., T. Bernard, L. T. Smith and D. Le Rudulier. 1989. Characterization of three choline transport activities in Rhizobium meliloti: modulation by choline and osmotic stress. J. Bact. 171: 531–537.Google Scholar
  34. 34.
    Roulier, M. A., B. Palenik and F. M. M. Morel. 1990. A method for the measurement of choline and hydrogen peroxide in seawater. Mar. Chem. 30: 409–421.CrossRefGoogle Scholar
  35. 35.
    Sherr, E. B. and B. F. Sherr. 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Pp. 207–212. Lewis Publishers, Boca Raton.Google Scholar
  36. 36.
    Smith, L. T., J.-A. Pocard, T. Bernard and D. Le Rudulier. 1988. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bact. 170: 3142–3149.PubMedGoogle Scholar
  37. 37.
    Snipes, W., A. Keith and P. Wanda. 1974. Active transport of choline by a marine pseudomonad. J. Bact. 120: 197–202.PubMedGoogle Scholar
  38. 38.
    Taylor, B. F. and D. C. Gilchrist. 1991. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl. Environ. Microbiol. 57: 3581–3584.PubMedGoogle Scholar
  39. 39.
    Visscher, P. T., M. R. Diaz and B. F. Taylor. 1993. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Mar. Ecol. Prog. Ser. 89: 293–296.CrossRefGoogle Scholar
  40. 40.
    Visscher, P. T. and B. F. Taylor. 1994. Demethylation of dimethylsulfoniopropionate to 3-mercapto-propionate by an aerobic marine bacterium. Appl. Environ. Microbiol. 60: 4617–4619.PubMedGoogle Scholar
  41. 41.
    Welsh, D. T. and R. A. Herbert. 1993. Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotic stress using natural abundance l3C nuclear magnetic resonance spectroscopy. FEMS Micro. Ecol. 13: 145–150.CrossRefGoogle Scholar
  42. 42.
    Wolfe, G. V. and R. P. Kiene. 1993. Radioisotope and chemical inhibitor measurements of dimethyl sulfide consumption rates and kinetics in estuarine waters. Mar. Ecol. Prog. Ser. 99: 261–269.CrossRefGoogle Scholar
  43. 43.
    Wolfe, G. V., E. B. Sherr and B. S. Sherr. 1994. Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar. Ecol. Prog. Ser. 111: 111–119.CrossRefGoogle Scholar
  44. 44.
    Zimmermann, R., R. Iturriaga and J. Becker-Birck. 1978. Simulataneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36: 925–935.Google Scholar
  45. 45.
    Zweifel, U. L. and C. Hagstrom. 1995. Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts). Appl. Environ. Microbiol. 61: 2180–2185.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Gordon V. Wolfe
    • 1
  1. 1.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations