Skip to main content

Summary

In 1972 Lovelock et al. published evidence of the ubiquity of DMS in surface seawater and proposed that marine DMS was the key compound transferring sulfur from the sea to the land via the atmosphere. At that time biochemical data were already available which suggested that DMSP could be the precursor of DMS in marine ecosystems. In the intervening years thousands of DMS and DMSP measurements have been made in coastal, shelf and open ocean waters and much more is now known about the water column processes which lead to DMS production. This paper will concentrate on the regional and global aspects of DMSP, which result from its role as the major precursor of DMS. DMS is now known to have 3 major environmental roles: it is the dominant volatile compound in the global sulfur cycle, the products of its atmospheric oxidation are acidic and therefore affect the acid-base balance of aerosols and rainwater, and aerosol particles derived from DMS are efficient cloud condensation nuclei (CCN) which have climatic significance. I will focus on the marine environment and discuss the sea-to-air exchange process, aspects of the atmospheric chemistry of DMS, the role of DMS in the sulfur cycle and its climatic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O. 1986. The ocean as a source of atmospheric sulfur compounds, p. 331–362. In P. BuatMenard (ed.), The Role of Air Sea Exchange in Geochemical Cycling. Reidel, Dordrecht.

    Google Scholar 

  2. Andreae, M. O. 1990. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 30: 1–29.

    Article  CAS  Google Scholar 

  3. Andreae, M. O., W.R. Barnard and J.M. Amnions. 1983. The biological production of dimethylsulfide in the ocean and its role in the global atmospheric sulfur budget. Env. Biogeochem. Ecol. Bull. 35: 167–177.

    CAS  Google Scholar 

  4. Andreae, M.O. and H. Raemdonck. 1983. Dimethylsulfide in the surface ocean and the marine atmosphere: a global view. Science 221: 744–747.

    Article  PubMed  CAS  Google Scholar 

  5. Barnes, I. 1993. Overview and atmospheric significance of the results from laboratory kinetic studies performed within the CEC project “OCEANO-NOX”, p. 223–237. In: G. Restelli and G. Angeletti (eds.), Dimethylsulphide: Oceans, Atmosphere and Climate. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  6. Barnes, I., K.H. Becker, P. Carlier. and G. Mouvier. 1987. FTIR study of the S/N02/I2/N2 photolysis system: the reaction of 10 radicals with DMS. Int. J. Chem. Kinet. 19: 489–501.

    Article  CAS  Google Scholar 

  7. Bates, T. S., J.D. Cline, R.H. Gammon and S.R. KellyHanson. 1987. Regional and seasonal variations in the flux of oceanic dimethylsulphide to the atmosphere. Journal of Geophysical Research 92: 2930–2938.

    Article  CAS  Google Scholar 

  8. Bates, T. S., B.K. Lamb, A. Guenther, J. Dignon and R.E. Stoiber. 1992. Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem. 14:315–337.

    Article  CAS  Google Scholar 

  9. Berresheim, H. 1987. Biogenic sulphur emissions from the sub-arctic and Antarctic oceans. J. Geophys. Res. 92:13245–13262.

    Article  CAS  Google Scholar 

  10. Boers, R., G.P. Ayers and J.L. Gras. 1994. Coherence between seasonal variation in satellite-derived cloud optical depth and boundary layer CCN concentrations at a mid-latitude southern hemisphere station. Tellus 46B: 123–131.

    Google Scholar 

  11. Brimblecombe, P. 1992. History of atmospheric acidity, p. 267–304. In M. Radojevic and R.M. Harrison (eds.), Atmospheric Acidity - Sources, Consequences and Abatement. Elsevier, Essex.

    Google Scholar 

  12. Broecker, W.S. and T.H. Peng. 1974. Gas exchange rates between air and sea. Tellus 26: 21–35.

    Article  CAS  Google Scholar 

  13. Calhoun, J.A. and T.S. Bates. 1989. Sulfur isotope ratio tracers of non-sea-salt sulfate in the remote atmosphere, p. 367–379. In E.S. Saltzman and W.J. Cooper (eds.), Biogenic Sulfur in the Environment. ACS Symposium Series 393, Washington.

    Chapter  Google Scholar 

  14. Carreto, J.L, M.O. Carignan, G. Daleo and S.G. deMarco. 1990. Occurrence of mycosporine-like amino acids in the red-tide dmofiagellate Alexandrium excavatum: UV-photoprotective compounds? J. Plankton Res. 12:909–921.

    Article  CAS  Google Scholar 

  15. Charlson, R. J. 1993. Gas-to-particle conversion and CCN production, p. 275–286. In G. Restelli and G. Angeletti (eds.), Dimethylsulphide: Oceans, Atmosphere and Climate. Kluwer, Dordrecht.

    Google Scholar 

  16. Charlson, R. J., J.E. Lovelock, M.O. Andreae and S.G. Warren. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326: 655–661.

    Article  CAS  Google Scholar 

  17. Coakley, J.A., R.L. Bernstein and P.A. Durkee. 1987. Effect of ship-stack effluents on cloud reflectivity. Science 237: 1020–1022.

    Article  PubMed  Google Scholar 

  18. Daykin, E.P. and PH. Wine. 1990. Rate of reaction of IO radicals with dimethylsulfide. J. Geophys. Res. 95: 18547–18553.

    Article  CAS  Google Scholar 

  19. Eriksson, E. 1963. The yearly circulation of sulfur in nature. J. Geophys. Res. 68: 4001–4008.

    Google Scholar 

  20. Falkowski, P. G., Y. Kim, Z. Kolber, C. Wilson, C. Wirick and R. Cess. 1992. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic. Science 256: 1311–1313.

    Article  PubMed  CAS  Google Scholar 

  21. Frew, D. C., J.C. Goldman, M.R. Dennett and A.S. Johnson. 1990. Impact of phytoplankton-generated surfactants on air-sea gas exchange. J. Geophys. Res. 95: 3337–3352.

    Article  CAS  Google Scholar 

  22. Goldman, J. C., M.R. Dennett and N.M. Frew. 1988. Surfactant effects on airsea exchange under turbulent conditions. DeepSeaRes. 35: 1953–1970.

    CAS  Google Scholar 

  23. Granat, L., H. Rodhe and R.U. Hallberg. 1976. The global sulfur cycle, p. 89–134. In B.H. Svensson and R. Soderlund (eds.), Nitrogen, Phosphorus and Sulfur-Global Cycles. Ecol. Bull.22, Stockholm.

    Google Scholar 

  24. Hayduk, W. and H. Laudie. 1974. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. A. I. Ch. E. Journal 20: 611–615.

    CAS  Google Scholar 

  25. Herndl, G. J., G. Mhller-Niklas and J. Frick. 1993. Major role of ultraviolet-B in controlling bacterioplank-ton growth in the surface layer of the ocean. Nature 361:717–719.

    Article  Google Scholar 

  26. Hesshaimer, V, M. Hermann and I. Levin. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370: 201–203.

    Article  CAS  Google Scholar 

  27. Hobbs, P.V., D.A. Hegg and R.J. Ferek. 1993. Recent field studies of sulfur gases, particles and clouds in clean marine air and their significance with respect to the DMS-cloud-climate hypothesis, p. 345–353. In G. Restelli and G. Angeletti (eds.), Dimethysulphide: Oceans, Atmosphere and Climate. Kluwer Dordrecht.

    Google Scholar 

  28. Holligan, P.M.1992. Do marine phytoplankton influence global climate p. 487–501. In P.G. Falkowski and A.D. Woohead (eds.), Primary Productivity and Biogeochemical Cyacles in the Sea. Plenum Press, New York

    Google Scholar 

  29. Hynes, A.J., P.H. Wine and D.H. Semmes, 1996. KInetics and mechanism of OH reactions with organic sulphides. J.Phys.Chem. 90: 4148–4156.

    Article  Google Scholar 

  30. Karentz, D., E. Cleaver and D.L. Mitchell. 1991. Cell survival characteristic and molecular responses of Antartic phytoplankton to ultraviolet B radiation. J. Phycol. 27, 326–341.

    Article  CAS  Google Scholar 

  31. Keller, M.D., W.K. Bellows and R.R.L. Guillard. 1989. Dimenthyl sulfide production in marine phytoplankton. p. 183–200. In E.S. Saltzman and W.J. Cooper (eds.) Biogenic Sulfur in the Environment. American Chemical Society, Washinton D.C.

    Google Scholar 

  32. Keswick, B.H., D.-S. Wang, and C.P. Gerba. 1982. The use of microorganisms as groundwater tracers:a review. Ground Water 20: 142–149.

    Article  Google Scholar 

  33. Kiene, R.P. and T.S Bates. 1990. Biological removal of dimenthyl sulphide from seawater. Nature 345, 702–705.

    Article  CAS  Google Scholar 

  34. Koga, S. and H. Tanaka. 1993. Numerical study of the oxidation process of dimenthylsulfide in the marine atmosphere. J. Atmos. Chem. 17, 201–228.

    Article  CAS  Google Scholar 

  35. Lancelot, C., G. Billen, A. Sournia, T. Weisse, F. Colijn, M.J.W. Veldhuis, A. Davies and P. Wassmann. 1987. Phaeocystis blooms and nutrient enrichment in the continental zones of the North Sea. Ambio 16: 38–46

    Google Scholar 

  36. Legrand, M., R.J. Delmans and R.J. Charlson. 1988. Climate forcing implications from Vostok ice-core sulphate data. Nature 334: 418–420.

    Article  CAS  Google Scholar 

  37. Legrand, M., C. Feinet-Saigne, E.S. Saltzman, C. Germain, N.I. Barkov and V.N. Petrov. 1991. Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 350, 144–6.

    Article  CAS  Google Scholar 

  38. Liss, P.S.1975. Chemistry of the Sea Surface Microplayer, p. 193–243. In J.P. Riley and G. Skirrow (eds.), Chemical Oceanography Volume 2. Academic Press, New York.

    Google Scholar 

  39. Liss, P.S. 1983. Gas transfer:experiments and geochemical imlications, p. 241–298. In P.S. Liss and W.G.N. Slinn (eds), Air-Sea Exchange of gases and Particles. Reidel, Dordrecht.

    Google Scholar 

  40. Liss, P.S. and P.G. Slater. 1974. Flux of gases across the air-sea interface. Nature 247: 181–184.

    Article  CAS  Google Scholar 

  41. Liss, P.S. and L. Merlivat. 1986. AirSea gas exchange rates:introduction and synthesis, p. 113–127. In P. BuatMenard (ed.), The role of AirSea Exchange in Geochemical cycling. Reidel, Dorcrecht.

    Google Scholar 

  42. Liss, P.S., A.J. Watson, M.I. Liddicoat, G. Malin, P.D. Nightingale, S.M. Turner and R.C. Upstill-Goddard. 1993. Trace gases and air-sea exchanges. Phil. Trans. Roy. Soc. Lond. A. 343:531–541.

    Article  CAS  Google Scholar 

  43. Liss, P.S., G. Malin, S.M. Turner and P.M. Holligan. 1994. Dimenthyl sulphide and Phaeocystis:a review. J. Mar. Syst. 5: 41–53.

    Article  Google Scholar 

  44. Lovelock, J.E., R.J. Maggs and R.A. Rasmussen. 1972. Atmospheric sulphur and the natural sulphur cycle. Nature 237, 452.

    Article  CAS  Google Scholar 

  45. Maki, J.S. 1993. The air-water interface as an ectreme environment, p.409–439. In T.E. Ford (ed). Aquatic Microbiology an Ecological Approach. Blackwell, Boston.

    Google Scholar 

  46. Malin, G., S. Turner, P. Liss, P. Holligan and D. Harbour. 1993. Dimethyl sulphide and dimethylsulphoniopropionate in the Northeast Atlantic during the summer cocolithopore bloom. Deep-Sea Res. 40: 1487–1508

    Article  CAS  Google Scholar 

  47. Marchant, H.J., A.T. Davidson and G.J. Kelly. 1991. UV-B protecting compunds in the marine alga Phaeocystis pochetii from Antartica. Mar. Biol. 109, 391–395.

    Article  CAS  Google Scholar 

  48. McArdle, N.C. and P.S. Liss. 1995. Isotopes and Atmospheric sulphur. Atmos. Environ. 29: 2553–2556.

    Article  CAS  Google Scholar 

  49. McMinn, A., H. Heijnis and D. Hodgson. 1994. Minimal effects of UVB radiation on Antartic diatoms over the past 20 years. Nature 370:547–549.

    Article  Google Scholar 

  50. Newman, L. and J. Forrest. 1991. Suphur isotope measurements relevant to power plant emissions in the northeaestern United States, p. 331–343. In H.R. Krouse and V.A. Grinenko (eds.), Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. Scope 43. Wiley, Chichester

    Google Scholar 

  51. Nightingale, P.D., C. Law, G. Malin, A.J. Watson, P.S. Liss, R.C. Upstill-Goddard and M.I. Liddicoat. (in prep.)Air-sea gas exchange measurements at sea using dual and triple tracer releases

    Google Scholar 

  52. Nguyen, B.C., A. Gaudry, B. Bonsang and G. Lambert. 1978. Reevaluation of the role of dimethyl sulphide in the sulphur budget. Nature 275, 637–639.

    Article  Google Scholar 

  53. Nriagu, J.O., R.D. Coker and L.A. Barrie. 1991. Origin of sulphur in Canadian Arctic haze from isotopes measurements. Nature 349:142–145.

    Article  CAS  Google Scholar 

  54. Peng, TH., W.S. Broecker, G.G. Mathieu, Y.H. Li and A.E. Bainbridge. 1979. Radon evasion rates in the Atlantic and Pacific oceans as determined during the GEOSECS program. J. Geophys. Res. 84: 2471–2486.

    Article  CAS  Google Scholar 

  55. Pike, E.B., A.W.J. Bufton and D.J. Gould. 1969. The use of Serratia indica and Bacillus subtilis var. niger spores for tracing sewage dispersion in the sea. J. Appl. Bacteriol. 32: 206–216.

    PubMed  CAS  Google Scholar 

  56. Plane, J. M. C.1989. Gas-phase atmospheric oxidation of biogenic sulphur compounds: a review, p. 404–423. In E.S. Saltzman and W.J. Cooper (eds.), Biogenic Sulfur in the Environment. ACS Symposium Series 393, Washington D.C.

    Chapter  Google Scholar 

  57. Saigne, C. and M. Legrand. 1987. Measurement of methanesulphonic acid in Antarctic ice. Nature 330: 240–242.

    Article  CAS  Google Scholar 

  58. Saltzman, E.S., K. Holmen and D.J. Cooper. 1988. Measurement of the piston velocity of dimethylsulfide: implications for its air-sea exchange. Eos 69: 1073.

    Google Scholar 

  59. Saltzman, E.S. and D.J. Cooper. 1989. Dimethyl sulfide and hydrogen sulfide in marine air, p. 330–351. In E.S. Saltzman and W.J. Cooper (eds.), Biogenic Sulfur in the Environment. ACS Symposium Series 393, Washington.

    Chapter  Google Scholar 

  60. Saltzman, E.S., D.B. King, K. Holmen and C. Leek. 1993. Experimental determination of the diffusion coefficient of dimethylsulfide in water. J. Geophys. Res. 98: 16481–16486.

    Article  Google Scholar 

  61. Sarnthein, M., K. Winn and R. Zahn. 1987. Paeleoproductivity of oceanic upwelling and the effect on anthropogenic C02 and climatic change, p. 311–317. In W. H. Berger and L. D. Labeyrie (eds.), Abrupt Climate Change. Reidel, Dordrecht.

    Google Scholar 

  62. Savoie, D. L. and J.M. Prospero. 1989. Comparison of oceanic and continental sources of non-sea-salt sulphate over the pacific Ocean. Nature 339 685–687.

    Article  CAS  Google Scholar 

  63. Schwartz, S.E. 1988. Are global cloud albedo and climate controlled by marine phytoplankton? Nature 336: 441–445.

    Article  Google Scholar 

  64. Shaw, G.E. 1987. Aerosols as climate regulators: a climate-biosphere linkage? Atmos. Environ. 21: 985–986.

    Article  CAS  Google Scholar 

  65. Slingo, A. 1989. Sensitivity of the earth’s radiation budget to changes in low clouds. Nature 343, 49–51.

    Article  Google Scholar 

  66. Smethie, WM., TT. Takahashi, D.W. Chipman and J.R. Ledwell. 1985. Gas exchange and C02 flux in the tropical Atlantic Ocean determined from 222Rn and pC02 measurements. J. Geophys. Res. 90: 7005–7022.

    Article  CAS  Google Scholar 

  67. Tans, P.P., I.Y. Fung and T. Takahashi. 1990. Observational constraints on the global atmospheric C02 budget. Science 247: 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  68. Turner, S. M. and P.S. Liss. 1989. A cryogenic technique for sampling the sea surface microlayer for trace gases. Chemical Oceanography 10, 379–392.

    CAS  Google Scholar 

  69. Turner, S. M., G. Malin, P. Nightingale and P.S. Liss. (submitted). Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Marine Chemistry.

    Google Scholar 

  70. Upstill-Goddard, R.C, A.J. Watson, P.S. Liss and M.I. Liddicoat. 1990. Gas transfer velocities in lakes measured with SF6. Tellus 42B: 364–377.

    Google Scholar 

  71. Wanninkhof, R. 1992. Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res. 97:7373–7382.

    Article  Google Scholar 

  72. Wanninkhof, R. and L.F. Bliven. 1991. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank. J. Geophys. Res. 96: 2785–2796.

    Article  Google Scholar 

  73. Watson, A.J., R.C. Upstill-Goddard and P.S. Liss. 1991. Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature 349: 145–147.

    Article  CAS  Google Scholar 

  74. Whung, P.-Y, E.S. Saltzman, M.J. Spencer, P.A. Mayewski and N. Grundestrup. 1994. Two-hundred-year record of biogenic sulfur in a south Greenland ice core (20D). J. Geophys. Res. 99: 1147–1156.

    Article  CAS  Google Scholar 

  75. Wigley, T.M.L. 1989. Possible climate change due to S02 derived cloud condensation nuclei. Nature 339: 365–367.

    Article  CAS  Google Scholar 

  76. Wigley, T.M.L. 1994. Outlook becoming hazier. Nature 369: 709–710.

    Article  Google Scholar 

  77. Wilke, CR. and P. Chang. 1955. Correlation of diffusion coefficients in dilute solutions. A. I. Ch. E. Journal 1:264–270.

    CAS  Google Scholar 

  78. Worrest, R.C, H. van Dyke and B.E. Thomson. 1978. Impact of enhanced simulated solar ultraviolet radiation upon a marine community. Photochemistry and Photobiology 27: 471–478.

    Article  Google Scholar 

  79. Yin, F., D. Grosjean and J.H. Seinfeld. 1990a. Photoxidation of dimethyl sulfide and dimethyldisulphide. I: Mechanism development. J. Atmos. Chem. 11: 309–64.

    CAS  Google Scholar 

  80. Yin, F., D. Grosjean, R.C. Flagan and J.H. Seinfeld. 1990b. Photoxidation of dimethyl sulfide and dimethyldisulphide. II: Mechanism evolution. J. Atmos. Chem. 11: 365–399.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Malin, G. (1996). The Role of DMSP and DMS in the Global Sulfur Cycle and Climate Regulation. In: Kiene, R.P., Visscher, P.T., Keller, M.D., Kirst, G.O. (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0377-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0377-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45306-9

  • Online ISBN: 978-1-4613-0377-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics