Skip to main content

On the Thermal Stability Length Dependence of High TC Superconductors

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: A Cryogenic Engineering Conference Publication ((ACRE,volume 41))

Abstract

The margin of stability for high TC superconductors may be characterized by the lowest thermal pulse that results in a quench. A numerical code, developed to investigate this stability margin, accounts for the temperature dependence of the thermal conductivity, electrical resistivity and heat capacity of the materials involved. The conductor is cooled solely by thermal conduction along its length, and its stability is studied as function of the length. It is found that the stability margin for a pure BSCCO 2212 conductor is independent of the length. However, the stability margin for a composite conductor obtained by adding 10% (by volume) of silver to the BSCCO is found to be strongly length dependent. A transition length is identified, for which shorter lengths exhibit a dramatically higher stability margin. This feature results when the length dependent thermal diffusion time is shorter than the time required to determine the conductor’s stability. This study confirms and explains the growing awareness that if normal zones appear in high TC coils, they will remain fairly localized.

on leave from Rafael and Technion-Israeli Institute of Technology, Haifa, 3200 Israel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DRESNER, L., Cryogenics,,Vol. 33, No. 9, pp. 900–909, (1993).

    Article  CAS  Google Scholar 

  2. IWASA, Y., Advances in Superconductivity, Vol. 5, pp. 1205–1210, (1992).

    Google Scholar 

  3. BELLIS, R.H. and IWASA, Y.,Cryogenics, ,Vol. 34, No. 3, pp. 129–144, (1994).

    Article  CAS  Google Scholar 

  4. SEOL, S.Y. and HULL, J.R., Cryogenics, ,Vol. 33, No. 10, pp. 966–975, (1993).

    Article  CAS  Google Scholar 

  5. ANSYS (Engineering Analysis System), SWANSON ANALYSIS SYSTEMS, INC., P.O.Box 65, Houston, PA, 15342, U.S.A.

    Google Scholar 

  6. SATO, K., HIKATA, T. and IWASA, Y., Applied Physics Letters, Vol. 57, pp. 1928–1933, (1990).

    Article  CAS  Google Scholar 

  7. SASAOKA, T., NOMURA, K., SATO, J. and KUMA, S., Applied Physics Letters, Vol. 64, pp. 1304–1305, (1994).

    Article  CAS  Google Scholar 

  8. OBERLY, C.E., KOZLOWSKI, G. and FINGERS, R.T., Advances in Cryogenic Engineering, Vol. 38B, pp. 479, (1992).

    Google Scholar 

  9. VAN DER LAAN, M.T.G., Tax, R.B., et al., Cryogenics, Vol. 30, (September Supplement), pp. 163, (1990).

    Google Scholar 

  10. VAN DER LAAN, M.T.G., Tax, R.B., et al., “Advances in Cryogenic Engineering”, Plenum Press, New York, (1994), Vol. 37B, pp. 1517

    Google Scholar 

  11. OHKURA, K., MUKAI, H., et al., Japanese Journal of Applied Physics, Vol. 32 Part 2, No. 11A, pp. 1606, (1993)

    Article  Google Scholar 

  12. SUKURABA, J., YAMADA, Y., et al., Japanese Journal of Cryogenic Engineering, Vol. 28, No. 9, pp. 519, (1993).

    Google Scholar 

  13. TAKAHASHI, M., HAKAMADA, R., et al., “Advances in Cryogenic Engineering”, Plenum, New York, (1994), Vol. 39, pp. 343.

    Google Scholar 

  14. HAYASHI, S., EGI, T., et al., “Advances in Cryogenic Engineering”, Plenum, New York, (1994), Vol. 40, pp. 319.

    Google Scholar 

  15. HASE, T., SHIBUTANI, K., HAYASHI, S., OGAWA, R. AND KAWATE, Y., Cryogenics, Vol. 35, No. 2, pp. 127–133, (1995).

    Article  CAS  Google Scholar 

  16. MATSUKAWA, M., TATEZAKI, F., NOTO, K., FUJISHIRO, H., et al., Cryogenics, Vol. 34, pp. 89–90, (1994).

    Article  Google Scholar 

  17. MORI, K., SASAKAWA, M., IGARASHI, T. AND ISIKAWA, Y. et al., Physica C, Vol. 162/164, pp. 512, (1989).

    Article  Google Scholar 

  18. COLLINGS, E.W., 2nd International Symposium on Superconductivity, Tsukuba, Japan, (November 1989).

    Google Scholar 

  19. HERMAN, P.F. et al., IEEE Transactions on Applied Superconductivity, Vol. 3, pp. 876–880, (1993).

    Article  Google Scholar 

  20. FLETCHER, L.S., PETERSON, G.P. AND SCHAUP, R., Transactions of the ASME-Heat Transfer, Vol. 113, pp. 274–276, (1991)

    Article  CAS  Google Scholar 

  21. REED, R.P. AND CLARK, A.F., (edt.), Materials at Low Temperature, American Society of Metals, Metals Park, Ohio, (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Maytal, BZ., Yang, S., Waldrop, J., Pfotenhauer, J.M. (1996). On the Thermal Stability Length Dependence of High TC Superconductors. In: Kittel, P. (eds) Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0373-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0373-2_72

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8022-1

  • Online ISBN: 978-1-4613-0373-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics