Skip to main content

Effects of Cryogenic Irradiation on Temperature Sensors

  • Chapter

Part of the book series: A Cryogenic Engineering Conference Publication ((ACRE,volume 41))

Abstract

Several types of commercially available cryogenic temperature sensors were calibrated, irradiated at 4.2 K by a gamma or neutron source, and recalibrated in-situ to determine their suitability for thermometry in radiation environments. Comparisons were made between pre-and post-irradiation calibrations with the equivalent temperature shift calculated for each sensor at various temperature in the 4.2 K to 330 K range. Four post-irradiation calibrations were performed with annealing steps performed at 20 K, 80 K, and 330 K. Temperature sensors which were gamma irradiated were given a total dose of 10,000 Gy. Temperature sensors which were neutron irradiated were irradiated to a total fluence of 2×1012 n/cm2. In general, for gamma radiation environments, diodes are unsuitable for use. Both carbon glass and germanium resistance sensors performed well at lower temperature, while platinum resistance sensors performed best above 30 K. Thin-film rhodium and Cernox™ resistance sensors both performed well over the 4.2 K to 330 K range. Only thin-film rhodium and Cernox™ resistance temperature sensors were neutron irradiated and they both performed well over the 4.2 K to 330 K range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Radiation Effects At The SSC,” M.G.D. Gilchriese, ed., Superconducting Super Collider Central Design Group, SSC-SR-1035 (1988).

    Google Scholar 

  2. G.C. Messenger and M.S. Ash. “The Effects of Radiation on Electronic Systems,” Van Nostrand Reinhold, New York (1986).

    Google Scholar 

  3. J.R. Srour, D.M. Long, D.G. Millward, R.L. Fitzwilson and W.L. Chadsey. “Radiation Effects on and Dose Enhancement of Electronic Materials”, Noyes Publications, Park Ridge, NJ.

    Google Scholar 

  4. V.A.J, van Lint, T.M. Flanagan, R.E. Leadon, J.A. Naber and V.C. Rogers. “Mechanisms of Radiation Effects in Electronic Materials, Vol. 1,” John Wiley and Sons, New York (1980).

    Google Scholar 

  5. S.S. Courts, D.S. Holmes, and P.R. Swinehart, Neutron and gamma radiation effects on cryogenic temperature sensors, in: “Temperature, Its Measurement and Control in Science and Industry,” J. F. Schooley, ed., American Institute of Physics, New York (1992) p. 1237.

    Google Scholar 

  6. S.S. Courts, D.S. Holmes, and P.R. Swinehart, “Radiation Resistant Cryogenic Temperature Sensor for the 4 K to 80 K Range,” final report for Department of Energy contract number DE-FG02–90ER81074 by Lake Shore Cryotronics, Inc., Westerville, OH (1994).

    Google Scholar 

  7. Lake Shore Cryotronics, Inc., “Temperature Measurement and Control, Product Catalog and Reference Guide, Part 1 of 2”, published by Lake Shore Cryotronics, Inc., Westerville, OH (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Courts, S.S., Holmes, D.S. (1996). Effects of Cryogenic Irradiation on Temperature Sensors. In: Kittel, P. (eds) Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0373-2_214

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0373-2_214

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8022-1

  • Online ISBN: 978-1-4613-0373-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics