Advertisement

Behavior of Helium II Bubble During Spin-Up and Spin-Down Motions Wrapping Around Rotating Dewar Well

  • R. J. Hung
  • H. L. Pan
  • G. J. Zu
Part of the A Cryogenic Engineering Conference Publication book series (ACRE, volume 41)

Abstract

Time dependent animation of spherical bubble spin-up from rest, elongate and wrap around the dewar well; and also, the fully wrapping bubble around rotating dewar well spin-down at an equilibrium rotating speed are numerically studied and simulated. Time dependent deformation of a full wrapping bubble around the rotating dewar well with and without unwrapping during the process of spin-down motion are investigated. Critical rotating speed for bubble to unwrap concerns the possibility of creating the problems of asymmetry in the imbalance liquid-vapor distribution due to sloshing dynamics perturbations in the liquid-vapor interface. Some similarity parameters are considered for how to promote the rotating well during the spin-down motion. Examples are given to illustrate the problems for dewar with various liquid-filled levels. Results show that the degree to assure the rotating bubble with and without unwrapping around the dewar well increases with increasing of the dewar rotating speed, Weber number, and also the size of the bubble.

Keywords

Liquid Helium Weber Number Time Dependent Deformation Ekman Number Helium Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkinson, D. T., Bender, P. L., etc., Physics Today, 39, 43, 1986.CrossRefGoogle Scholar
  2. 2.
    Proceedings of Society of Photo-Optical Instrumentation Engineers, 619, 1, 1986.Google Scholar
  3. 3.
    Homicz, F. H., and Welch, J. E., Physics Fluids, 8, 2182, 1965.CrossRefGoogle Scholar
  4. 4.
    Hung, R. J., and Leslie, F. W., Journal of Spacecraft and Rockets, 25, 70, 1988.CrossRefGoogle Scholar
  5. 5.
    Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W., International Journal for Microgravity Research and Applications, 11, 81, 1989.Google Scholar
  6. 6.
    Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W., Acta Astronautica, 19, 411, 1989.CrossRefGoogle Scholar
  7. 7.
    Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W., Journal of Spacecraft and Rockets, 26, 167, 1989.CrossRefGoogle Scholar
  8. 8.
    Veldman, A. E. P., and Vogels, M. E. S., Acta Astronautica, 11, 641, 1984.CrossRefGoogle Scholar
  9. 9.
    Kitchens, C. W. Jr., AIAA Journal, 18, 929, 1980.CrossRefGoogle Scholar
  10. 10.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Journal of Guidance. Control and Dynamics, 15, 817, 1992.CrossRefGoogle Scholar
  11. 11.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Journal of Fluids and Structures, 6, 493. 1992.CrossRefGoogle Scholar
  12. 12.
    Hung, R. J., Shyu, K. L., and Lee, C. C. Journal of Propulsion and Power, 8, 778, 1992.CrossRefGoogle Scholar
  13. 13.
    Hung, R. J., Shyu, K. L., and Lee, C. C., Journal of Spacecraft and Rockets, 29, 523, 1992.CrossRefGoogle Scholar
  14. 14.
    Leslie, F. W., Journal of Fluid Mechanics, 161, 269, 1985.CrossRefGoogle Scholar
  15. 15.
    Mason, P., Collins, D., etc., Proceedings 7th International Cryogenic Engineering Conferences, Surrey, England, Science and Technology Press, 1978.Google Scholar
  16. 16.
    Hung, R. J., Pan, H. L., and Long, Y. T., Cryogenics, 34, 641, 1994.CrossRefGoogle Scholar
  17. 17.
    Van Sciver, S. W., Helium Cryogenics, pp. 429, Plenum Press, New York, 1986.Google Scholar
  18. 18.
    Donnelly, R. J., Quantized Vortices in Helium II, pp. 328, Cambridge University Press, Cambridge, 1991.Google Scholar
  19. 19.
    Hung, R. J., and Pan, H. L., Transactions of the Japan Society for Aeronautical and Space Sciences, 36, 153, 1993.Google Scholar
  20. 20.
    Hung, R. J., and Pan, H. L., Fluid Dynamics Research, 14, 29, 1994.CrossRefGoogle Scholar
  21. 21.
    Landau, L. D., and Lifshitz, Fluid Mechanics, Pergamon Press, London, 1959.Google Scholar
  22. 22.
    Hung, R. J., and Pan, H. L., Acta Mechanica Sinica, 9, 298, 1993.CrossRefGoogle Scholar
  23. 23.
    Harlow, F. H., and Welch, F. E., Physics of Fluids, 8, 2182, 1965.CrossRefGoogle Scholar
  24. 24.
    Spalding, D. B. International Journal of Numerical Methods in Engineering, 4, 551, 1972.CrossRefGoogle Scholar
  25. 25.
    Patanker, S. V., and Spalding, S. D., International Journal of Heat Mass Transfer, 15, 1787, 1972.CrossRefGoogle Scholar
  26. 26.
    Patanker, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere- McGraw-Hill, New York, NY, pp. 197, 1980.Google Scholar
  27. 27.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Acta Astronautica, 21, 309, 1990.CrossRefGoogle Scholar
  28. 28.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Acta Astronautlca, 25, 523, 1991.CrossRefGoogle Scholar
  29. 29.
    Hung, R. J., and Lee, C. C., Journal of Spacecraft and Rockets. 31, 1107, 1994.CrossRefGoogle Scholar
  30. 30.
    Greenspan, H.P., The Theory of Rotating Fluids, Cambridge University press, 327, 1968.Google Scholar
  31. 31.
    Hung, R. J., and Pan, H. L., Journal of Guidance, Control and Dynamics, 17, in press, 1984.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • R. J. Hung
    • 1
  • H. L. Pan
    • 1
  • G. J. Zu
    • 1
  1. 1.The University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations