Skip to main content

Non-Anticoagulant Actions of Glycosaminoglycans

Protein Binding Studies

  • Chapter
Nonanticoagulant Actions of Glycosaminoglycans

Abstract

Unfractionated heparin (UFH) remains the agent of choice for the prevention and treatment of venous thromboembolism (VTE).1 The anticoagulant activity of UFH is primarily mediated through its specific binding to antithrombin III (AT-III)2,3 resulting in a marked enhancement of its ability to inactivate thrombin, factor Xa, and other blood coagulation serine-proteases. UFH is known to bind to a number of plasma proteins including hystidine-rich glycoprotein,4 vitronectin,5 fibronectin,6 von Willebrand factor,7 and platelet factor-48. The binding of UFH to AT-III and HC-II is mediated by a specific saccharide sequence,1,3,9 that is present in approximately one-third of the molecules of commercial UFH,10,11 while the non-specific binding of UFH to the other plasma proteins appears to be related to heparin molecular size, the higher molecular weight chains showing a greater affinity binding than those of lower molecular weight12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirsh J. Heparin. N Eng J Med 1991; 324: 1565–74.

    Article  CAS  Google Scholar 

  2. Rosemberg RD, Damus PS. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 1973; 248: 6490–505.

    Google Scholar 

  3. Choay J, Petitou M, Lormeau JC, Sinay P, Casu B, Gatti G. Structure activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Comm 1983; 116: 492–99.

    Article  PubMed  CAS  Google Scholar 

  4. Lijnen HR, Hoylaerts M, Collen D. Heparin binding properties of human histidine-rich glycoprotein: mechanism and role in the neutralization of heparin in plasma. J Biol Chem 1983; 258:3803–08.

    PubMed  CAS  Google Scholar 

  5. Preissner KT, Muller-Berghaus G. Neutralization and binding of heparin by S-protein/vitronectin in the inhibition of factor Xa by antithrombin III. J Biol Chem 1987; 262:12247–53.

    PubMed  CAS  Google Scholar 

  6. Mosesson MV, Amrani DL. The structure and biologic activities of plasma fibronectin. Blood 1980; 56: 145–158.

    PubMed  CAS  Google Scholar 

  7. Sobel M, McNeill PM, Carlson PL, Kermode JC, Adelman B, Conroy R, Marques D. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo. J Clin Invest 1991; 87: 1787–93.

    Article  PubMed  CAS  Google Scholar 

  8. Rucinski B, Niewiarowski S, Strzyzewski M, Holt JC, Mayo KH. Human platelet factor 4 and its C-terminal peptides: heparin binding and clearance from the circulation. Thromb Haemost 1990; 63: 493–98.

    PubMed  CAS  Google Scholar 

  9. Lindahl U, Backström G, Höök M, Thunberg L, Fransson LA, Linker A. Structure of the antithrombin-binding-site of heparin. Proc Natl Acad Sci USA 1979; 76: 3198–202.

    Article  PubMed  CAS  Google Scholar 

  10. Höök, Björk I, Hopwood J, Lindhai U. Anticoagulant activity of heparin: separation of high-activity and low-activity species by affinity chromatography on immobilized antithrombin. FEBS Lett 1976; 66:90–93.

    Article  PubMed  Google Scholar 

  11. Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive form of heparin. Biochem Biophys Res Comm 1976; 69:570–77.

    Article  PubMed  CAS  Google Scholar 

  12. Andersson LO, Barrowcliffe TW, Holmer E, Johnson EA, Söderström G. Molecular weight dependency of the heparin potentiated inhibition of thrombin and activated factor X. Effect of heparin neutralization in plasma. Thromb Res 1979; 15: 531–41.

    Article  PubMed  CAS  Google Scholar 

  13. Young E, Hirsh J. Contribution of red blood cells to the saturable mechanism of heparin clearance. Thromb Haemost 1990: 64; 559–63.

    PubMed  CAS  Google Scholar 

  14. Casu B, Diamantini G, Fedeli G, Mantovani M, Oreste P, Pescador R, Porta R, Prino G, Torri G. Zoppetti G. Retention of antilipemic activity by periodate-oxidized non-anticoagulant heparins. Arzneim Forsch/Drug Res 1986; 637–42.

    Google Scholar 

  15. Teien AN, Lie M. Evaluation of an amidolytic heparin assay method: increased sensitivity by adding purified antithrombin III. Thromb Res 1977; 10: 399–410.

    Article  PubMed  CAS  Google Scholar 

  16. Rowland M and Tozer TN. Clinical Pharmacokinetics: Concepts and Applications. 2nd ed., Lea and Febiger, Kent, UK, 1989.

    Google Scholar 

  17. Cipolle RJ and Rodvold KA. Heparin. In: Applied Pharmacokinetics. Principles of Therapeutic Drug Monitoring. Evans WE, Schentag JJ, Jusko WJ Eds., 3rd ed., Applied Therapeutics, Inc. Vancouver WA, 1986, Chapter 30, pp 1–39.

    Google Scholar 

  18. Cruickshank MK, Levine MN, Hirsh J, Roberts R, Siguenza M. A standard heparin nomogram for the management of heparin therapy. Arch Intern Med 1991; 151: 333–37.

    Article  PubMed  CAS  Google Scholar 

  19. Young E, Prins M, Levine MN, Hirsh J. Heparin binding to plasma proteins, an important mechanism for heparine resistance. Thromb Haemost 1992; 67: 639–43.

    PubMed  CAS  Google Scholar 

  20. Hirsh J, Levine MN. Low molecular weight heparin. Blood 1992; 79: 1–16.

    PubMed  CAS  Google Scholar 

  21. Agnelli G, lorio A, Renga C, Boschetti E, Nenci GG, Ofosu FA and Hirsh J. Prolonged anti-thrombin activity of low molecular weight heparins: clinical implications for the treatment of thromboembolic diseases. Circulation, 1995 (in press)

    Google Scholar 

  22. Bara L, Billaud E, Gramond G, Kher A, Samama M. Comparative pharmacokinetics of a low molecular wieght heparin (PK 10169) and unfractionated heparin after intravenous and subcutaneous administration. Thromb Res 1985; 39: 631–36.

    Article  PubMed  CAS  Google Scholar 

  23. Frydman AM, Bara L, Le Roux Y, Woler M, Chauliac F, Samama M. The antithrombotic activity and pharmacokinetics of enoxaparin, a low molecular weight heparin, in human given single subcutaneous doses of 20 to 80 mg. J Clin Pharmacol 1988; 28: 609–18.

    PubMed  CAS  Google Scholar 

  24. Handeland GF, Abildgaard U, Holm U, Amesen KE. Dose adjusted heparin treatment of deep vein thrombosis: a comparison of unfractionated and low molecular weight heparin. Eur J Clin Pharmacol 1990; 39: 10712.

    Article  Google Scholar 

  25. Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cell in culture. Biochim Biophys Acta 1985; 845: 196–203.

    Article  PubMed  CAS  Google Scholar 

  26. Lane DA, Pejler G, Glynn AM, Thompson EA, Lindhai U. Neutralization of heparin-related saccharides by histidine-rich glycoprotein and platelet factor 4. J Biol Chem 1986; 261: 3980–86.

    PubMed  CAS  Google Scholar 

  27. Dawes J, Pavuk N. Sequestration of therapeutic glycosaminoglycans by plasma fibronectin. Thromb Haemost 1991; 65: 829 (abstr).

    Google Scholar 

  28. Sobel M, McNeill PM, Carlson PL, Kermode JC, Adelman B, Conroy R, Marques D. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo. J Clin Invest 1991; 87: 1787–93.

    Article  PubMed  CAS  Google Scholar 

  29. Young E, Cosmi B, Weitz J, Hirsh J. Comparison of non-specific binding of unfractionated heparin and low molecular weight heparin (enoxaparin) to plasma proteins. Thromb Haemost 1993; 70: 625–630.

    PubMed  CAS  Google Scholar 

  30. Agnelli G, Renga C, lorio A, Nenci GG, Young E, Hirsh J. Ex-vivo comparison of the non-specific binding of unfractionated heparin and enoxaparin to plasma proteins. Thromb Haemost 1993; 69: 857 (Abstr).

    Google Scholar 

  31. Agnelli G, lorio A, Renga C, Nenci GG. Non-specific binding of unfractionated and low molecular weight heparins to plasma proteins after administration in healthy volunteers, (submitted)

    Google Scholar 

  32. Young E, Wells P, Holloway S, Weitz J, Hirsh J. Ex-vivo and in-vitro evidence that low molecular weight heparins exhibit less binding to plasma proteins than unfractionated heparin. Thromb Haemost 1994; 71:300–04.

    PubMed  CAS  Google Scholar 

  33. Hirsh J. Low molecular weight heparins. Decker Periodicals Inc., Hamilton, Canada, 1994.

    Google Scholar 

  34. Cosmi B, Young E, Weitz JI, Hirsh J. A comparison of the plasma recovery of unfractionated heparin with that of dermatan sulfate in patients with thromboembolic diseases. Thrombosis and Haemostasis 1993, 69(6), 413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Iorio, A., Alatri, A., Agnelli, G. (1996). Non-Anticoagulant Actions of Glycosaminoglycans. In: Harenberg, J., Casu, B. (eds) Nonanticoagulant Actions of Glycosaminoglycans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0371-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0371-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8021-4

  • Online ISBN: 978-1-4613-0371-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics