Skip to main content

Pharmacology of Synthetic and Biotechnology-Derived Homologues and Analogues of Heparin

  • Chapter
Nonanticoagulant Actions of Glycosaminoglycans
  • 40 Accesses

Abstract

Structural and functional elucidation of the components of natural heparin has facilitated the development of several synthetic and semi-synthetic analogues of this anticoagulant drug. A chemically synthesized pentasaccharide which mimics the ATIII binding site in heparin molecule is in Phase II clinical trials for the management of post-surgical thromboembolic disorder. Several other synthetic analogues including hypersulfated lactobionic acid (Aprosu-late®) and polysulfones (GL-522) have also been developed. These agents exhibit some of the action of heparin, however their biochemical and physiologic actions are much narrower than heparin. These agents, therefore, can be used to determine the structure activity relationship in a selective manner. All of these agents exhibit varying degrees of interactions with serpins and TFPI. Chemically modified heparins (desulfated, hypersulfated) have also been developed and may have specific pharmacologic actions. The advances in biotechnology have also provided semisynthetic homologues and analogues of heparin. A bacterial polysaccharide derived product (K-5) has been molecularly optimized to mimic heparin and low molecular weight heparins. Utilizing E Coli derived polysaccharide and highly specific enzymes and chemical transformation, K-5 derived heparin homologues of varying molecular mass (5–20 kDa) have been developed. These agents exhibit surprisingly similar biochemical and pharmacologic properties in in vitro and in vivo settings when compared to heparins. This presentation will provide an overview of the current developments in both the synthetic and biotechnology areas which have provided products that can be optimized to substitute heparin and low molecular weight heparin for different indications. Such products can be optimized to exhibit better safety and efficacy index and can be especially useful in heparin compromised patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLean J. The thromboplastic action of cephalin. Am. J. of Physio. 41:250–7, 1916.

    Google Scholar 

  2. Casu, B. Methods of structural analysis. In Heparin: Chemical and Biological Properties, Clinical Applications. Lane, D and Lindahl U., eds. Edward Arnold, London, 25–50, 1989.

    Google Scholar 

  3. Lindahl, U., Feingold, D., and Roden L. Biosynthesis of heparin. Trends in Biochemical Sciences 11:221–5, 1986.

    Article  CAS  Google Scholar 

  4. Levy, S.W. Heparin and blood lipids. Revue Canandienne de Biologie 17(1): 1–61, 1958.

    CAS  Google Scholar 

  5. Bradshaw R.A. and Wessler S. Heparin: structure, function, and clinical implications. In Advances in Experimental Medicine and Biology. Plenum Press, New York, Vol. 52, 1975.

    Google Scholar 

  6. Cruz, W.O. and Dietrich C.P. Antihemostatic effect of heparin counteracted by adenosine triphosphate. Proceedings for the Society for Experimental Biology and Medicine, 126:420–6, 1967.

    CAS  Google Scholar 

  7. Neuhoff, V., Schill, W.B., and Sternbach, H. Micro-analysis of pure deoxyribonucleic acid-dependent polymerase from Escherichia coli. Action of heparin and rifamicin on structure and function. Biochem. J. 117:623–31, 1970.

    PubMed  CAS  Google Scholar 

  8. Sealey, J.E., Gerten, J.N., and Ladingham, J.G. Inhibition of renin by heparin. J. Clin. Endo. 27:699–705, 1967.

    Article  CAS  Google Scholar 

  9. Howell, W.H. The purification of heparin and its presence in blood. Am. J. of Physio. 71:553–62, 1925.

    Google Scholar 

  10. Abildgaard U. Highly purified antithrombin III with heparin cofactor activity prepared by disc electrophoresis. Scand. J. Clin, and Lab. Invest. 21(1):89–89, 1968.

    Article  CAS  Google Scholar 

  11. Briginshaw, G.F. and Shanberge, J.N. Identification of two distinct heparin cofactors in human plasma. Separation and partial purification. Arch. Biochem. and Biophys. 161:683–90, 1974.

    Article  CAS  Google Scholar 

  12. Abildgaard U., Lindahl, A.K., and Sandset P.M. Heparin requires both antithrombin and extrinsic pathway inhibitor for its anticoagulant activity in blood. Haemostasis 21:254–7, 1991.

    PubMed  CAS  Google Scholar 

  13. Ofosu, F. Antithrombotic mechanism of heparin and related compounds. In Heparin: Chemical and Biological Properties, Clinical Applications. Lane, D and Lindahl U., eds. Edward Arnold, London, 433–454, 1989.

    Google Scholar 

  14. Choay, J., Lormeau, J.C., Petitou, M., Sinay, P. Casu, B., Oreste, P., Torri, G, and Gatti, G. Anti-Xa active heparin oligosaccharides. Thromb.Res. 18(3-4):573–8, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Lindahl, U., Backstrom, G., Hook, M., Thunberg, L., Fransson, L.A., and Linker, A. Structure of the antithrombin-binding site in heparin. Proceed. Natl. Acad. Sci. USA 76:3198–202, 1979.

    Article  CAS  Google Scholar 

  16. Rosenberg, R.D. and Lam, L. Correlation between structure and function of heparin. Proceed. Natl. Acad. Sci. USA 76:1218–22, 1979.

    Article  CAS  Google Scholar 

  17. Walenga, J.M., Bara, L., Petitou, M., Samama, M, Fareed, J., and Choay, J. Importance of a 3–0 sulfate group in a heparin pentasaccharide for antithrombotic activity. Thromb. Res. 52:553–63, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Klauser, R.J., Raake, W., Meinetsberger, E., and Zeiller, P. Antithrombotic and anticoagulant properties of synthetic polyanions: Sulfated bis-aldonic acid amides. J. Pharm. Exp. Ther. 259(1):8–14, 1991.

    CAS  Google Scholar 

  19. Lindahl, A.K., Sandset, P.M., and Abildgaard, U. The present status of tissue factor pathway inhibitor. Blood Coag. Fibrinol. 3:439–49, 1992.

    CAS  Google Scholar 

  20. Jeske, W., Hoppensteadt, D., Klauser, R., Kammereit, A., Eckenberger, P., Haas, S., Wyld, P., and Fareed, J. Effect of repeated aprosulate and enoxaparin administration on tissue factor pathway inhibitor antigen levels. Blood Coag. Fibrinol. 6:119–24, 1994.

    Article  Google Scholar 

  21. Jeske, W., Nelson, S., Lee, T., Chen, J., and Fareed, J. Tissue factor pathway inhibitor (TFPI) release induced by a novel sulfonic acid polyphenol (GL-522) following IV administration to cynomologous monkeys. Faseb Journal 7(3):A210, 1993.

    Google Scholar 

  22. Zitoun, D. Bara, L., and Samama, M.M. Compared activity of human, rat, and rabbit tissue factor pathway inhibitors. Thromb. Res. 72:269–74, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Hara, T., Yokoyama, A., Ishihara, H., Yokoyama, Y. Nagahara, T., and Iwamoto M. DX-9065a, a new synthetic, potent anticoagulant and selective inhibitor of factor Xa. Thromb. Hemost. 71(3):314–9, 1994.

    CAS  Google Scholar 

  24. Tanabe, K., Hara, T., Morishima, Y, Ishihara, H. Yokoyama, A, Honda, Y, and Iwamoto, M. An orally active, specific inhibitor of factor Xa prevents thrombosis without bleeding time in rats. Thromb. Haemost. 69:890 (Suppl), 1993.

    Google Scholar 

  25. Yamazaki, M., Asakura, H., Aoshima, K., Saito, M., Jokaji, H., Uotani, C, Kumabashiri, I., Morishita E., Ikeda, T., and Matsuda, T. Effects of DX-9065a, an orally active, newly synthesized and specific inhibitor of factor Xa, against experimental disseminated intravascular coagulation in rats. Thromb. Hemost. 72:393–6, 1994.

    CAS  Google Scholar 

  26. Aspinsall, G.O. Structural chemistry of the hemicelluloses. Adv. Carbo. Chem. 14:434–64, 1959.

    Google Scholar 

  27. Raveux, R., Gros, P., and Rriot, M. Bull. Soc. Clin. Fr. 33:2744–2749, 1966.

    Google Scholar 

  28. Barrowcliffe, T.W., Gray, E., Merton, R.E., Dawes, J., Jennings, J.A., Hubbard, A.R. and Thomas, D.P. Anticoagulant activities of pentosan polysulfate (Hemoclar) due to release of hepatic triglyceride lipase (HTGL). Thromb. Hemost. 56(2):202–6, 1986.

    CAS  Google Scholar 

  29. Baba, M., Nakajima, M., Schols, D., Pauwels, R., Balzarini, J., DeClercq, E. Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro. Antiviral Res. 9:335–43, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Wellstein, A., Zugmaier, G., Califano, J.A., Kern, F., Paik, S., and Lippman, M.E. Tumor growth dependent on Kaposi’s sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate. J. Natl. Cancer. Inst. 83:716–20, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Fischer, A.M., Barrowcliffe, T.W., and Thomas, D.P. A comparison of pentosan polysulfate (SP54) and heparin. I: Mechanism of action on blood coagulation. Thromb. Hemost. 47:104–8, 1982.

    CAS  Google Scholar 

  32. Scully, M.F., Weerasinge, K.M., Ellis, V, Djazaeri, B., and Kakkar, V.V. Anticoagulant and antiheparin activities of a pentosan polysulfate. Thromb. Res. 31:87–97, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Ofosu, F.A., Sie, P, Modi, G.J., Fernandez, F., Buchanan, M.R., Blajchman, M.A., Boneu, B., and Hirsh, J. The inhibition of thrombin-dependent positive-feedback reactions critical to the expression of the anticoagulant effect of heparin. Biochem. J. 243:579–588, 1987.

    PubMed  CAS  Google Scholar 

  34. Scully, M.F. and Kakkar, V.V. Identification of heparin cofactor II as the principle plasma cofactor for the antithrombin activity of pentosan polysulfate (SP54). Thromb. Res. 36:187–94, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Soria, C, Soria, J., Ryckewaert, J.J., Holmer, E., and Caen, J.P. Anticoagulant activities of a pentosan polysulfate: comparison with standard heparin and a low molecular weight heparin. Thromb. Res. 19:455–463, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Van Ryn-McKenna, J., Gray, E., Weber, E., Ofosu, F.A., and Buchanan, M.R. Effects of sulfated polysaccharides on inhibition of thrombus formation initiated by different stimuli. Thromb. Hemost. 61(1):7–9, 1989.

    Google Scholar 

  37. Krupinski, K., Breddin, H.K., and Casu, B. Anticoagulant and antithrombotic effects of chemically modified heparins and pentosanpolysulfate. Haemostasis 20:81–92, 1990.

    PubMed  CAS  Google Scholar 

  38. Tardy-Poncet, B., Tardy, B., Grelac, F., Reynaud, J., Mismetti, R Bertrand, J.C, Guyotat, D. Pentosan polysulfate-induced thrombocytopenia and thrombosis. Am. J. of Hematol. 45:252–7, 1994.

    Article  CAS  Google Scholar 

  39. Casu, B., Grazioli, G., Hannesson, H.H., Jann, B, Jann, K., Lindahl, U., Naggi, A., Oreste, P., Razi, N., Torri, G., Tursi, R, Zoppetti, G. Biologically active, heparan sulfate-like species by combined chemical and enzymatic modification of the Escherichia coli polysaccharide K5. Carbo. Lett., submitted.

    Google Scholar 

  40. Jann, K., Jann, B., Casu, B., Torri, G., Naggi, A., Grazioli, G., Lindahl, U., Hannesson, H., Kusche, M., Razi, N., Zoppetti, G., Oreste, P., Anticoagulants and processes for preparing such. Patent WO 92/17507, 1992.

    Google Scholar 

  41. Casu, B., Grazioli, G., Razi, N., Guerrini M., Naggi, A., Torri, G., Oreste P., Tursi, R, Zoppetti, R, Lindahl, U. Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbo. Res. 263:271–84, 1994.

    CAS  Google Scholar 

  42. Jordan, R.E. and Marcum, J.A. Anticoagulantly active heparin from clam (Mercenaria mercenaria). Arch. Biochem. Biophys. 248(2):690–5, 1986.

    Article  PubMed  CAS  Google Scholar 

  43. Pejler, G., Danielsson, A., Bjork, I., Lindahl, U., Nader, H., and Dietrich, C.P. Structure and antithrom-bin-binding properties of heparin isolated from the clams Anomalocardia brasiliana and Tivela mac-troides. Jour. Biol. Chem. 262(24): 11413–11421, 1987.

    CAS  Google Scholar 

  44. Dietrich, C.P. Nader, H.B., dePaiva, J.R, Santos, E.A., Holme, K R., and Perlin, A.S. Heparin in molluscs: chemical, enzymatic degradation and 13C and 1H NMR spectroscopical evidence for the maintenance of the structure through evolution. Int. J. Biol. Macromol. 11(6):361–6, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Dietrich, CR, dePaiva, J.F, Moraes, CT., Takahashi, H.K., Porcionatto, M.A., and Nader, H.B. Isolation and characterization of a heparin with high anticoagulant activity from Anomalocardia brasiliana. Biochim. Biophys. Acta. 843:1–7, 1985.

    CAS  Google Scholar 

  46. Coyne, E., Messmore, H., Walenga, J.M. Hoppensteadt, D., Farid, S., Wehrmacher, W., and Bennes, E.J. Fish skin glycosaminoglycans — a source for highly active heavily sulfated chondroitin sulfates. Thromb. Hemost. 73(6):1351, 1995.

    Google Scholar 

  47. Naggi, A. and Torri, G. Depolymerized and supersulfated heparin, process for its preparation and pharmaceutical composition. US patent # 4,727,063, 1988.

    Google Scholar 

  48. Borman, S. Glycotechnology drugs begin to emerge from the lab. C&EN 71(26):27–34, 1993.

    Article  Google Scholar 

  49. Klauser, R.J., Meinetsberger, E., and Raake, W. Biochemical studies on sulfated lactobionic acid amides. Semin. Thromb. Hemost. 17(Suppl. 1):118–25, 1991.

    PubMed  Google Scholar 

  50. Meuleman, D.G., Hobbelen, P.M.J., Van Dinther, T.G., Vogel, G.M.T., Van Boeckel, C.A.A., and Moelker, H.C.T. Antifactor Xa activity and antithrombotic activity in rats of structural analogues of the minimum antithrombin III binding sequence: Discovery of compounds with a longer duration of action than the natural pentasaccharide. Seminars in Thrombosis and Hemostasis 17(Suppl. 1): 112–17, 1991).

    PubMed  Google Scholar 

  51. O’Brein, D.R The molecular biology and biochemistry of tissue factor. Bailliere’s Clin. Haematol. 2:801–20, 1989.

    Article  Google Scholar 

  52. Girard, T.J., Warren, L.A., Novotny, W.E., Likert, K.M., Brown, S.G., Miletich, J.R and Broze, G.J. Functional significance of the Kunitz-type domains of lipoprotein associated coagulation inhibitor. Nature 338:518–20, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Piani, S., Tamagnone, G., Alpino, R., Milani, M.R., and Fantuz, M. Heparin derivatives and process for their preparation. US patent # 5,010,063, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Jeske, W., Fareed, J., Hoppensteadt, D., Casu, B. (1996). Pharmacology of Synthetic and Biotechnology-Derived Homologues and Analogues of Heparin. In: Harenberg, J., Casu, B. (eds) Nonanticoagulant Actions of Glycosaminoglycans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0371-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0371-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8021-4

  • Online ISBN: 978-1-4613-0371-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics