Skip to main content

Non-Anticoagulant Actions of Glycosaminoglycans (GAGs)

The Therapeutical Approach to Alzheimer’s Disease

  • Chapter
Nonanticoagulant Actions of Glycosaminoglycans

Summary

Glycosaminoglycans (GAGs) relationship with brain structures is analyzed in view of their role in the pathophysiology of Alzheimer’s disease (AD or SDAT; senile dementia Alzheimer’s type). The difference between Proteoglycans (PGs) and GAGs is considered the key for the interpretation of the two opposite roles played by these molecules. PGs are one of the possible determinants of AD whereas GAGs are tied to tentative therapeutical approaches in AD. These opposite positions are considered referring to both the main microstructures of the brain (e.g. cell surface, basement membrane, Extracellular Matrix) and the functional macrostructures (e.g. blood-brain barrier; BBB). A particular emphasis was given to the main AD markers:[amyloid substance, neurofibrillary tangles (NFT) and cerebral vessel microangiopathy] in order to show the background of AD therapy with GAP(glycosaminoglycan polisulfate). The modification of the basement membrane of the BBB, the reaction of the Extracellular Matrix (ECM) and the consequent neuronal damage could derive from the presence of antibodies against the protein core of a HSPG (heparan sulfate proteoglycan). The positive data obtained in Phase II, III and IV clinical trials with GAP administration suggest that GAGs may represent more than an orphan theory in the management of AD.*

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Aβ:

amyloid beta protein

AchE:

acetylcholinesterase

ACT:

α 1-antichimotripsin

AD:

Alzheimer’s disease

AGP:

manual for the documentation of psychopathology in gerontopsychiatry

Apo E:

apolipoprotein E (E2, E3, E4)

Apo J:

apolipoprotein J

ATIII:

antithrombin III

BBB:

blood-brain barrier

βAPP:

beta amyloid protein precursor

BchE:

butyirylcholinesterase

BLIPS:

biomedical laboratory information process system

CBF:

cerebral blood flow

CGI:

clinical global impression

CS:

chondroitin sulfate

Ch4S:

choindroitin 4 sulfate

Ch6S:

chondroitin 6 sulfate

CFS:

cerebro spinal fluid

CMRO2 :

cerebral metabolism regional oxygen

CMRglu:

cerebral metabolism regional glucose

CNS:

central nervous system

CSPG:

chondroitin sulfate proteoglycan

DSM-III:

diagnostic and statistical manual of mental disorders

DOPAC:

3,4-dihydroxyphenyl acetic acid

DS:

dermatan sulfate

DSPG:

dermatan sulfate proteoglycan

EHS:

Hengelbreth-Holm-Swarm mouse sarcoma

FAD:

Alzheimer’s disease familiar type

FGF:

fibroblast growth factor

GAGs:

glycosamynoglicans

GAP:

glycosaminoglycan polisulfate

GDN/PN-1:

glial derived nexin/protein nexin-1

GDS:

global deterioration scale

GPI:

Glycosylphosphatidiyl-inisitol

ECDEU:

early clinical drug evaluation

ECM:

extracellular matrix

HA:

hyaluronic acid

HAPG:

hyaluronic acid proteoglycan

HC II:

heparin cofactor II

HDL:

high density lipoprotein

HEP:

heparin

HEPG:

heparin proteoglycan

5-HIAA:

5-hydroxyindolacetic acid

HIS:

Hachinski ischemic score

HS:

heparan sulfate

HSPG:

heparan sulfate proteoglycan

HVA:

homovanillic acid

KS:

keratan sulfate

LDL:

low density lipoprotein

LRP:

low density lipoprotein receptor protein

LRU:

lipasemic releasing unit

MAO-B:

monoamine oxidase type B

MID:

multi infarct dementia

MHPG:

3-3-methoxy-4-hydroxy-phenylglycol

MMSE:

mini mental state examination

MRI:

magnetic resonance imaging

MT:

microtubules network

NFT:

neurofibrillary tangles

NGF:

nerve growth factor

NSAIDs:

non steroidal antiinflammaroty drugs

PAI:

plasminogen activator inhibitor

PD:

primary dementia

PET:

positron emission tomography

PG:

proteoglycan

PHF:

paired helical filaments

PSPMSQ:

Pfeiffer short portable mental status questionnaire

PrP-res:

prion protein protease resistant

PS:

protamine sulfate

rCBF:

regional cerebral blood flow

sc+-MNBn:

scrapie infected cell line

SCAG:

Sandoz clinical assessment geriatric

SDAT:

senile dementia of the Alzheimer type

SHGRS:

Stuard hospital geriatric scale

SP:

seniles plaques

SPECT:

single photon emission computed tomography

TGF-β:

transforming growth factor beta

t.i.d.:

three times per day (ter in die)

tPA:

tissue plasminogen activator

uPA:

urokinase plasminogen activator

VLDL:

very low density lypoprotein

WAIS:

Weschler adult intelligence scale

References

  1. Psalm 90 (89): in Nova Vulgata Bibliorum Sacrorum.(Libreria Editrice Vaticana, 1986)

    Google Scholar 

  2. Lindahl, U.;H””k, M.: Glycosaminoglycans and their binding to biological macromolecules. Ann.Rev. Biochem. 47:385–417 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. Casu, B.:Structure and Biological Activity of Mammalian Glycosaminoglycans.:in Ban, T.A.; Lehman, H.E.: Diagnosis and treatment of Old Age Dementias (Karger Basel 23: 55–67 Switzerland 1989)

    Google Scholar 

  4. Jackson, R.L.; Busch, S.J.; Cardin, A.C.: Glycosaminoglycans: Molecular Properties, Protein Interaction, and Role in Physiological Processes.Physiolol.Rev. 71:481–539 (1991)

    CAS  Google Scholar 

  5. Kjellén, L.; Lindahl, U.: Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60: 443–475 (1991)

    Article  PubMed  Google Scholar 

  6. Lindahl, U.; Lidholt, K.; Spillmann, D.; Kjellén L.: More to “heparin” than anticoagulation. Throm. Res.75: 1–32(1994)

    Article  CAS  Google Scholar 

  7. Casu, B.: Structure and biological activity of heparin. In: Tipson R.S.; Horton D.:Advance in Carbohydrate Chemistry and Biochemisrty (Academic Press, Inc.43:51–127 1985)

    Google Scholar 

  8. Casu, B.: Heparin and Heparin-like Polysaccharides. In: Dumitriu, S.:Polymeric Biomaterials.(Marcel Dekker, Inc.New York 159–177 1994)

    Google Scholar 

  9. Gallagher, J.T.; Lyon, M.; Steward, W.P.: Structure and function of heparan sulfate proteoglycans. Biochem. J. 250: 719–726 (1988)

    PubMed  CAS  Google Scholar 

  10. Franson, L.: Structure and function of cell-associated proteoglycans. Trends Biochem. Sci. 12: 406–411 (1987)

    Google Scholar 

  11. Poole, A.R.: Proteoglycans in health and disease: structures and functions. Biochem. J. 236:1–14 (1986)

    PubMed  CAS  Google Scholar 

  12. Montani, A.; Roggi, C.: Determinazione quantitativa e qualitativa dei glicosaminoglicani nel siero di soggetti maschi e femmine. Boll. Soc. It.Biol. Sper.LVI: 1837–1843 (1980)

    Google Scholar 

  13. Jenkins, H.G.; Bachelard, H.S.: Glycosaminoglycans in Cortical Autopsy Samples from Alzheimer Brain. J.Neurochem.51:1641–1645 (1988)

    Article  PubMed  CAS  Google Scholar 

  14. Kraemer, P.M.; Smith, D.A.: High molecular-weigth heparan sulfate from the cell surface. Biochem.Bio-phys.Res.Commun.56: 423–430 (1974)

    Article  CAS  Google Scholar 

  15. Bernfield, M.; Kokenyesi, R.; Kato, M.; Hinkes, M.; Spring, J.; Gallo, R.; Lose, E.: Biology of Sindecans: Annu. Rev. Cell. Biol. 8: 333–364 (1992)

    Article  Google Scholar 

  16. David, G.; Lories, V.; Decock, B.; Marynen, P.; Cassiman, J.J.; Van Den Berghe, H.: Molecular cloning of a phosphatidilinositol-anchored membrane heparan sulfate proteoglycan from human cell fibroblasts. J. Cell. Biol. 124: 149–160 (1994)

    Article  Google Scholar 

  17. David, D.: Integral membrane heparan sulfate proteoglycans. FASEB J. 7: 1023–1030 (1993)

    PubMed  CAS  Google Scholar 

  18. Stipp, C.S.; Litwack, E.D.; Lander, A.D.: Cerebroglycan: An integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed expecially during neuronal differentiation. J. Cell. Biol. 124: 149–160 (1994)

    Article  PubMed  CAS  Google Scholar 

  19. Kiang, W.-L.; Crochett, C.P.; Margolis, R.K.; Margolis, R.U.:Glycosaminoglycans and Glycoproteins Associated with Microsomal Subfraction of Brain and Liver.Biochemistry 18: 3841–3848 (1978)

    Article  Google Scholar 

  20. Schubert, D.; Schroeder, R.; La Corbiere, M.; Saitoh, T.; Cole, G.: Amyloid b Protein Precursor Is Possibly a Heparan Sulfate Proteoglycan Core Protein. Science 241: 223–226 (1988)

    Article  PubMed  CAS  Google Scholar 

  21. Oldberg,.; Kiellen, L.; H””k, M: Cell-Surface Heparan Sulfate. J. Biol. Chem. 254: 8505–8510 (1979)

    PubMed  CAS  Google Scholar 

  22. Kiellén, L.; Oldberg,.; H””k, M: Cell-Surface Heparan Sulfate. J. Biol.Chem. 255:10407–10413 (1980)

    Google Scholar 

  23. Kiellén, L.; Pettersson, I.; H””k, M: Cell-Surface Heparan Sulfate: An intercalated membrane proteoglycan. Biochemistry 78: 5371–5375 (1981)

    Google Scholar 

  24. Yanagishita, M; Hascall, V.C.: Characterization of Heparan Sulfate Proteoglycans Synthetized by Rat Ovarian Granulosa Cells in Culture. J.Biol.Chem. 258:12857–12864 (1983)

    PubMed  CAS  Google Scholar 

  25. Rapraeger, A.; Bernfield M.: Cell Surface Proteoglycan of Mammary Epitelial Cells. J.Biol. Chem. 260: 4103–4109(1985)

    CAS  Google Scholar 

  26. Jalkanen, M.; Nguien, H.; Rapraeger, A.; Kurn, N.; Bernfield, M.: Heparan Sulfate Proteoglycan from Mouse Mammary Epitelial Cells: Localization on the Cell Surface with a Monoclonal Antibody. J.Cell Biol. 101:976–984(1985)

    Article  PubMed  CAS  Google Scholar 

  27. Iozzo R.V.: Turnover of Heparan Sulfate Proteoglycan in Human Colon Carcinoma Cells. J. Biol. Chem. 262: 1888–1900(1987)

    PubMed  CAS  Google Scholar 

  28. Lyon, M.; Deakin J.A.; Gallagher, J.T.:Liver Heparan Sulfate Structure. J. Biol.Chem. 269: 11208–11215 (1994)

    PubMed  CAS  Google Scholar 

  29. Gowda, D.C.:Relation to Amyloid b Protein Precursor to Heparan Sulfate Proteoglycans. Science 244: 826–828 (1988)

    Article  Google Scholar 

  30. Kallunki, P.; Tryggvason, K.: Human basement membrane heparan sulfate proteoglycan core protein: A 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Cell. Biol. 116: 559–571 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. Murdoch, A.D.; Dodge, G.R.; Cohen, I; Tuan, R.S.; Iozzo, R.V.: Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Biol. Chem. 267: 8544–8577 (1992)

    PubMed  CAS  Google Scholar 

  32. Paulsson, M.: Basement membrane proteins: Structure, assembly, and cellular interaction. Crit. Rev. Biochem. Mol. Biol. 27: 93–127 (1992)

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi, K.; Hayashi, M.; Boutin, E.; Cunha, G.R.; Bernfield, M.; Trelstad, R.L.: Hormonal Modification of Epitelial Differentiation and Expression of Cell Surface Heparan Sulfate Proteoglycan in the Mouse Vaginal Epithelium. Lab.Invest. 58: 68–76 (1988)

    PubMed  CAS  Google Scholar 

  34. Kanwar, S.Y.; Farquhar, M.G.: Presence of Heparan Sulfate in the Glomerular basement membrane. Proc. Natl. Acad. Sci. USA 76:1303–1307 (1979)

    Article  PubMed  CAS  Google Scholar 

  35. Trelstad, R.L.; Hayashi, K.; Toole, B.P.:Epitelia collagens and glycosaminoglicans in the embrionic cornea. Macromolecular order and morphogenesis in the basement membrane. J. Cell. Biol. 62: 815–830 (1974)

    Article  PubMed  CAS  Google Scholar 

  36. Hay, E.D.; Meier, S.:Glycosaminoglican synthesis by embrionic inductors: neural tube, nothocord, and lens. J. Cell. Biol. 62: 889–898 (1974)

    Article  PubMed  CAS  Google Scholar 

  37. Laurie, G.W.; Leblond, C.P.; Martin, G.R.: Localization of Type IV Collagen, Laminin, and Fibronectin to the Basal Lamina of Basament Membranes. J. Cell. Biol. 95:340–344 (1982)

    Article  PubMed  CAS  Google Scholar 

  38. Linker, A.; Hovingh, P.; Kanvar, Y.S.; Farquhart, M.G.: Characterization of heparan sulfate isolated from dog glomerular basement membranes. Lab. Invest. 44: 560–569 (1980)

    Google Scholar 

  39. Rosenzweig, L.J.; Kanvar, Y.S.: Removal of Sulfated (Heparan Sulfate) or Nonsulfated (Hyaluronic Acid) glycosaminoglicans Results in Increased Permeability of the Glomerular Basament Membrane to 125I-Bovine Serum Albumin. Lab. Invest. 47: 177–184 (1982)

    PubMed  CAS  Google Scholar 

  40. Hassel, J.R.; Gheron Robey, P.; Barrach, H.-J.; Wilczek, J.; Rennard S. I.; Martin G.R.: isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc. Natl. Acad. Sci. USA 77: 4494–4498(1980)

    Article  Google Scholar 

  41. Cohen, M.P.; Surma, M.L.: In vivo biosynthesis and turnover of 35S-labeled glomerular basement membrane. Biochem. Biophis. Acta 716: 337–340s (1982)

    CAS  Google Scholar 

  42. Narindrasorasak, S.; Lovery, D.A.; Altman, A.R.; Gonzalez-DeWhitt, P.A.;Greengerg, B.D.; Kisilevsky, R.: Characterization of High Affinity Binding between Laminin and Alzheimer’s Disease Amyloid Precursor Protein. Lab.Invest. 67: 643–652 (1992)

    PubMed  CAS  Google Scholar 

  43. Maxwell, D.S.; Pease, D.C.: The electro microscopy of the choroid plexus. J.Biophys. Biochem.Cytol. 2:467–481(1956)

    Article  PubMed  CAS  Google Scholar 

  44. Griffin D.E.; Giffel, J.: Study of Protein Characteristic That Influence Entry into the Cerebrospinal Fluid of Normal Mice and Mice with Encephalitis. J.Clin.Invest. 70: 289–294 (1982)

    Article  PubMed  CAS  Google Scholar 

  45. Felgenhauer, K.: Protein size and cerebrospinal fluid composition. Klin.Wochenschr. 52: 1158–1164 (1974)

    Article  PubMed  CAS  Google Scholar 

  46. Felgenhauer, K.: Protein secretion and filtration at human body fluid barriers. Pflugers Arch. Eur. J. Phisiol. 384: 9–17 (1980)

    Article  CAS  Google Scholar 

  47. Nagy, Z.; Peters, H.; Httner, I.: Charge-Related Alteration of the Cerebral endotelium. Lab. Invest.49: 662–671 (1983)

    PubMed  CAS  Google Scholar 

  48. Doege, K.; Sasaki, M.; Horigan, E.; Hassel, J.R.; Yamada, Y.: Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J.Biol.Chem. 262:17757–17767 (1987)

    PubMed  CAS  Google Scholar 

  49. Zimmerman, D.R.; Rouslahti, E.: Multiple domains of the large fibroblast proteglycan, versican. EMBO J. 8:2975–2981 (1989)

    Google Scholar 

  50. Neame, P.J.; Choi, H.U.; Rosemberg, L.C.: The primary structure of the core protein of the small, leucine-rich proteoglican (PG I) from bovine articular cartilage. J. Biol.Chem. 264: 8653–8661 (1989)

    PubMed  CAS  Google Scholar 

  51. Day, A.A.; McQuillan, C.I.; Termine, J.D.; Young, M.R.: Molecular cloning and sequence analysis of the cDNA for small proteoglycan II of bovine bone. Biochem. J. 248: 801–805 (1987)

    PubMed  CAS  Google Scholar 

  52. Krusius, T.; Rouslahti, E.: Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc. Natl. Acad. Sci. USA 83: 7683–7687 (1986)

    Article  PubMed  CAS  Google Scholar 

  53. De Agostini, A.I.; Watkins, S.C.; Slayter, H.S.; Youssoufian, H.; Rosemberg, R.D.: Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J. Cell. Biol. 3:1293–1304 (1990)

    Article  Google Scholar 

  54. Mahley, R.W.: Apolipoprotein E: Cholesterol Transport Protein with Expanding Role in Cell Biology.Science 240: 622–630

    Google Scholar 

  55. Pitas, R.E.; Boyles J.K.; Lee, S.H. et al.: Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoprotein. Biochem. Biophys. Acta 917:148–161 (1987)

    PubMed  CAS  Google Scholar 

  56. Strittmatter, W.J.; Weisgraber, K.H.; Huang, D.Y.; Dong, L.-M.; Salvensen, G.S.; Pericak-Vance, M.; Schmechel, D.; Saunders, A.M.; Goldgaber, D.; Roses, A.D.: Binding of human apolipoprotein E to syntetic amyloid b peptide: Isoform-specific event and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90: 8098–8102 (1993)

    Article  PubMed  CAS  Google Scholar 

  57. Rebeck, G.H.; Perl, T.T.; West, H.L.; Sochdi, P.; Lipsitz, L.A.; Hyman, B.T.: Reduced apolipoprotein î4 allele frequency in the oldest old Alzheimer patients and cognitively normal individuals. Neurology 44:1513–1516(1994)

    PubMed  CAS  Google Scholar 

  58. Maestre, G.; Ottman, R.; Stern, Y.; Gurland, B.; Chun, M.; Tang, M.-X.; Shelanski, M.; Tycho, B.; Mayeux, R.: Apolipoprotein E and Alzheimer Disease: Ethnic Variation in Genotypic Risk. Ann. Neurol. 37:254–258(1995)

    Article  PubMed  CAS  Google Scholar 

  59. Wisniewski, T.; Lalowski, M.; Golabek, A.; Vogel, T.; Frangione, B.: Is Alzheimer’s disease an apolipoprotein E amyloidosis? Lancet 345: 956–958 (1995)

    Article  PubMed  CAS  Google Scholar 

  60. Moestrup, S.K.; Gliemann, J.: Analysis of ligand recognition by the purified a2-macroglobulin receptor (low density lipoprotein receptor-related protein). J.Biol: Chem: 266: 14001–14007 (1991)

    Google Scholar 

  61. Beisiegel, U.; Weber, W; Ihrke, G. et al. The LDL receptor-related protein, LRP, is an alipoprotein E-binding protein. Nature 341: 162–164 (1989)

    Article  PubMed  CAS  Google Scholar 

  62. Bu, G.; William, S.; Strickland, D.K.; Schwartz, A.L.: Low density lipoprotein receptor -related protein/a2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc. Natl. Acad. Sci. USA 89: 7427–7431 (1992)

    Article  PubMed  CAS  Google Scholar 

  63. Kounnas, M.Z.; Henkin, J.; Argraves, W.S.; Stickland, D.K.: Low density lipoproteins receptor-related protein/a2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J. Biol.Chem. 268: 21862–21867(1993)

    PubMed  CAS  Google Scholar 

  64. Orth, K.; Madison, E.L.; Gething, M.-J. et al. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/a2-macroglobulin receptor. Poc. Natl. Acad. Sci. USA 89: 7422–7426 (1992)

    Article  CAS  Google Scholar 

  65. Nykjaker, A.; Petersen, C.M.; Moller, B. et al. Purified a2-macroglobulin receptor/LDL receptor-related protein bind urokinase-plasminogen activator inhibitor type-1 complex. J.Biol:Chem. 267: 14543–14546 (1992)

    Google Scholar 

  66. Rebeck, G.W; Harr, S.D.; Strikland, D.K.; Hyman, B.T.; Multiple, Diverse Senile Plaque-associated Proteins Are Ligands of an Apolipoprotein E Receptor, the a2-Macroglobulin Receptor/Low-Density-Lipoprotein Receptor-related Protein. Ann. Neurol 37:211–217 (1995)

    Article  PubMed  CAS  Google Scholar 

  67. Weisgraber, K.H.; Rail, S.C.; Mahley, Jr R.W; Milne, Y.L.; Marcel, Y.L.; Sparrow, J.T.: Human apolipoprotein E. Determination of the Heparin binding sites of apolipoprotein E3. J.Biol. Chem. 261: 2068–2076 (1986)

    PubMed  CAS  Google Scholar 

  68. Ji, Z.-S.; Brecht, W.J.; Miranda, R.D.; Hussain, M.M.; Innerarity, T.L.; Mahley, R.W: Role of Heparan Sulfate Proyeoglycans in the Binding and Uptake of Apolipoprotein E-enriched Remnant Lipoproteins by Cultured Cells. J. Biol. Chem. 268: 10160–10167 (1993)

    PubMed  CAS  Google Scholar 

  69. Cardin, A.D.; Hirose, N.; Blankenship, D.T.; Jakson, L.R.; Harmony, J.K.A.: Binding of a high reactive heparin to human apolipoprotein E: identification of two heparin binding domains. Biochem. Biophys. Res. Commun. 134: 783–789 (1986)

    Article  PubMed  CAS  Google Scholar 

  70. Corder, E.H.; Saunders, A.M.; Rish, N.J., et al. Apolipoprotein E type 2 allele decreases the risk for late onset Alzheimer’sdisease. Nature Genet. 7: 180–184 (1994)

    Article  PubMed  CAS  Google Scholar 

  71. Sch,,cter, F.; Faure-Delanef, L.; Guenot, F. et al.: Genetic association with human longevity at the APOE and ACE loci. Nat. Genet. 6: 29–32 (1994)

    Article  Google Scholar 

  72. Helkala E.L.; Koivisto, K.; H,,nninen, T. et al.: The association of apolipoprotein polymorfism with memory: a population based study. Neuroscience Letter 191: 141–144 (1995)

    Article  CAS  Google Scholar 

  73. Petersen R.C; Smith, G.E.; Ivnik, R.J. et al.: Apolipoprotein E Status as a predictor of the Development of Alzheimer’s Disease in Memory-Impaired Individuals. JAMA 273: 1274–1278 (1995)

    Article  PubMed  CAS  Google Scholar 

  74. Corder, E.H.; Saunders, A.M.; Strittmatter, W.J. et al: Gene Dose of Apolipoprotein E Type 4 Allele and the risk of Alzheimer’s Disease in late Onset Families. Science 261: 921–923 (1993)

    Article  PubMed  CAS  Google Scholar 

  75. Martin, G.R.; Timpl, R.: Laminin and other basament membrane components. Annu. Rev. Cell.Biol. 3: 57–85 (1987)

    Article  PubMed  CAS  Google Scholar 

  76. Snow, D.M.; Lemmon, V.; Carrino, D.A.; Caplan, A.I.; Silver, J.: Sulfated proteoglycans in astroglial barriers inhibit neutite outgrowth in vitro. Exper. Neurol. 109: 111–130 (1990)

    Article  CAS  Google Scholar 

  77. Snow, D.; Steindler, D.A.; Silver, J.: Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev. Biol. 138: 359–376 (1990)

    Article  PubMed  CAS  Google Scholar 

  78. Frenette, G.P.; Ruddon, R.W.; Krzesicki, R.F.; Naser, J.A.; Peters, B.P.. Biosynthesis and deposition of a non covalent laminin-heparan sulfate proteoglycan complex and other basal lamina components by a human malignant cell line. J. Biol. Chem. 264: 3078–3088 (1989)

    PubMed  CAS  Google Scholar 

  79. Kouzi-Koliakos, K.; Koliakos, G.G.; Tsilibary, E.C.; Furcht, L.T.; Charonis, A.S.: Mapping of three major heparin-bindings sites on laminin and identification of a novel heparin-binding site on the B1 chain. J. Biol.Chem. 264: 17971–17978 (1989).

    PubMed  CAS  Google Scholar 

  80. Suzuki, S.; Pierschbaker, M.D.; Hayman, E.G.; Nguien, K.; ™hgren, Y.; Rouslahti, E.: Domain structure of vitronectin. Alignment of active sites. J.Biol. Chem. 259: 15307–15314 (1984)

    PubMed  CAS  Google Scholar 

  81. Lane, D.A.; Flynn, A.M.; Pejler, G.; Lindahl, U.; Choay, J.; Preissner, K.: Structural requirements for the neutralization of heparin-like saccharides by complement S protein/vitronectin. J. Biol. Chem. 262: 16343–16348(1987)

    PubMed  CAS  Google Scholar 

  82. Peterson, C.B.; Morgon, M.T.; Blackburn, M.N.: Histidine-rich glycoprotein modulation of the anticoagulant activity of heparin. Evidence for mechanism involving competition with both antithrombin and thrombin for heparin binding. J.Biol.Chem. 262: 7567–7574 (1987)

    PubMed  CAS  Google Scholar 

  83. Heremans, A.; De Cock, B., Cassiman, J.J.; Van Den Berghe, H.; David, G.: The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. J. Biol.Chem. 265: 8716–8724 (1990)

    PubMed  CAS  Google Scholar 

  84. Ogamo, A.; Nagai, A.; Nagasawa, K.: Binding of heparin fractions and other polysulfated polycaccharides to plasma fibronectin: effect of molecular size and degree of sulfation of polisaccharides. Biochem. Biophys. Acta 841: 30–41 (1985)

    PubMed  CAS  Google Scholar 

  85. Khan, M.Y.; Jaikaria, N.S.; Frenz, D.A.; Villanueva, G.; Newman, S.A.: Structural changes in the NH2-terminal domain of fibronectin upon interaction with heparin. J. Biol.Chem. 263: 11314–11318 (1988)

    PubMed  CAS  Google Scholar 

  86. Kaesberg, P.R.; Ershler, W.B.; Esko, J.D.; Mosher, D.F.: Chinese hamster ovary cell adhesion to human platelet thrombospondin is dependent on cell surface heparan sulfate proteoglycan. J. Clin. Invest. 83: 994–1001 (1989)

    Article  PubMed  CAS  Google Scholar 

  87. Dixit, V.M.; Hennessy, S.W.; Grant, G.A.; Rotvein, P.; Frazier, W.A.: Characterization of cDNA encoding the Heparin and collagen biding domains of human thrombospondin. Proc. Natl. Acad. Sci. USA 83. 5449–5453 (1986)

    Article  PubMed  CAS  Google Scholar 

  88. Shubert, D.; Lacorbiere, M.: Isolation of adhesion-mediating protein from chick neural retina adherons. J. Cell. Biol. 101: 1071–1077 (1985)

    Article  Google Scholar 

  89. Rauvala, H.; Merenmies, J.; Pihlaskari, R.; Korkolainen, M.; Huhtala, M.-L.; Panula, P.: The adhesive and neurite-promoting molecule p30: analysis of the amino-terminal sequence and production af antipep-tide antibodies that detect p30 at the surface of neuroblastoma cell and brain neurons. J. Cell. Biol. 107: 2293–2305 (1988)

    Article  PubMed  CAS  Google Scholar 

  90. Rauvala, H.: An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J. 8: 2933–2941 (1989)

    PubMed  CAS  Google Scholar 

  91. Besner, G.; Higashiyama, S.; Klagsbrun,M.: Isolation and characterization of a macrophage-derived heparin-binding growth factor. Cell Regulation 1: 811–819 (1990)

    PubMed  CAS  Google Scholar 

  92. Burgess, W.H.; Maciag, T.: The heparin-binding (fifbroblast) growth factor family of proteins. Annu. Rev. Biochem. 58: 575–606 (1989)

    Article  PubMed  CAS  Google Scholar 

  93. Yayon, A.; Klagsburn, M.; Esko, J.D.; Leder, P.; Ornitz, D.M.: Cell surface, heparin-like molecule are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 64: 841–848 (1991)

    Article  PubMed  CAS  Google Scholar 

  94. Rifkin, D.B.; Moscatelli, D.: Recent development in the cell biology of fibroblast growth factor. J Cell. Biol. 109:1–6(1989)

    Article  PubMed  CAS  Google Scholar 

  95. Thomas, K.A.: Fibroblast growth factor. FASEB J. 1: 434–440 (1987)

    PubMed  CAS  Google Scholar 

  96. Lobb, R.R.: Clinical application of heparin-binding growth factors. Eur. J.Clin.Invest.18: 321–336 (1988)

    Article  PubMed  CAS  Google Scholar 

  97. Unsicker, K.; Reichert-Preibsch, H.; Schmidt, R.; Pettman, B.; Labourdett, G.; Sensenbrenner, M.: Astroglial and fibroblast factors have neurotripic functions for cultured peripheral and central nervous system neurons. Proc. Natl. Acad. Sci. USA 84: 5459–5463 (1987)

    Article  PubMed  CAS  Google Scholar 

  98. Walicke, P.; Cowan, W.M.; Ueno, N.; Baird, A.; Guillemin, R.: Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite exrension. Proc. Natl. Acad. Sci. USA 83: 3012–3016(1986)

    Article  PubMed  CAS  Google Scholar 

  99. Morrison, R.S.; Sharma, A.; De Vellis, J.; Bradshaw, R.A.: Basic fibroblast growth factor support the survival of cerebral cortical neurons in primary culture. Proc. Natl. Acad. Sci. USA 83. 7537–7541 (1986)

    Article  PubMed  CAS  Google Scholar 

  100. Schubert, D.; Ling, M.; Baird, A.: Multiple influences of a heparin-binding growth factor on neuronal development. J. Cell. Biol. 104: 635–643 (1987)

    Article  PubMed  CAS  Google Scholar 

  101. Kurokawa, M.; Doctrow, S.R.; Klagsburn, M.: Neutralising antibodies inhibit the binding of basic fibroblast growth factor to its receptor but not heparin. J.Biol. Chem. 264: 7686–7691 (1989)

    PubMed  CAS  Google Scholar 

  102. Gordon, P.B.; Choi, H.U.; Conn, G.; Ahmed, A.; Ehrman, B.; Rosenberg, L.; Hatcher, V.B.: Extracellular matrix heparan sulfate proteoglycans modulate the mytogenic capacity of acidic fibroblast growth factor. J. Cell. Physiol. 140: 584–592 (1989)

    Article  PubMed  CAS  Google Scholar 

  103. Damon, D.H.; D’Amore, P.A.; Wagner, J.A.: Sulfated glycosaminoglicans modify growth factor-induced neurite outgrowth in PC12 cells. J.Cell. Physiol. 135: 293–300 (1988)

    Article  PubMed  CAS  Google Scholar 

  104. Damon, D.H.; Lobb, R.R.; D’Amore, P.A.; Wagner, J.A.: Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half life. J. Cell. Physiol. 138: 221–226 (1989)

    Article  PubMed  CAS  Google Scholar 

  105. Ishai-Michaeli, R.; Eldor, A.; Vodlavski, I.: Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell. Regulation 1: 833–842(1987)

    Google Scholar 

  106. Saksela, O; Moscatelli, D; Sommer, A.; Rifkin, D.B.: Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J.Cell. Biol. 107: 743–751 (1988)

    Article  PubMed  CAS  Google Scholar 

  107. Gospodarowicz, D.; Cheng, J: Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128:474–484(1986)

    Article  Google Scholar 

  108. Carrel, R.W.; Christey, P.B.; Boswell, D.R.: Serpins: antithrombin and other inhibitors of coagulation and fibrinolysis evidence from amino acid sequences. In: Thrombosys, Haemostasis (Verstraete, M.et al.: Leuven Univ. Press:1–15 1987)

    Google Scholar 

  109. Stone, S.R.; Nick, H.; Hofsteenge, J.; Monard, D.: Glial-derived neurite-promoting factor ia a slow-binding inhibitor of tripsin, thrombin, and urokinase. Arch. Biochem.Biophys. 252: 237–244 (1987)

    Article  PubMed  CAS  Google Scholar 

  110. Wagner, S.L.; Geddes, J.W.; Cotman, C.W; Lau, A.L.; Gurwitz, D.; Isakson, P.J.; Cunningham, D.D.: Protease nexin-1, an antithrombin with neurite outgrowth activity, is reduced in Alzheimer disease. Proc. Natl. Acad. Sci. USA 86:8284–8288 (1989)

    Article  PubMed  CAS  Google Scholar 

  111. Meier, R.P.; Spreier, P.; Ortmann, A.; Harel, A.; Monard, D.: Induction of glia-derived nexin after lesion of a peripheral nerve. Nature (Lond.) 342: 548–550 (1989)

    Article  PubMed  CAS  Google Scholar 

  112. Farrel, D.H.; Cunnigham, D.D.: Glycosaminoglycans on fibroblasts accelerate thrombin inhibition by protease nexin-1. Biochem. J. 245: 543–550 (1987)

    Google Scholar 

  113. Wagner, W.D.; Lau, A.L.; Cunningham, D.D.: Binding of protease nexin-1 to the fibroblast surface alters its target proteinase specificity. J.Biol.Chem. 264: 611–615 (1989)

    PubMed  CAS  Google Scholar 

  114. Folkman, J.; Klagsburn, M.; Sasse, J.; Wadzinski, M.; Ingber, D.; Vlodavski, I.: A heparin binding angiogenic protein -basic fibroblast growth factor- is stored within basement membrane. Am. J. Pathol. 130:393–400(1988)

    PubMed  CAS  Google Scholar 

  115. Kinsella, M.G.; Wight, T.N.: Structural characterization of heparan sulfate proteoglycan subclasses isolated from bovine aortic endothelial cell cultures. Biochemistry 27:2136–2144 (1988)

    Article  PubMed  CAS  Google Scholar 

  116. Mc Caffrey, T.A.; Falcone, D.J.; Brayton, C.F.; Agarwal, L.A.; Welt, F.G.P., Weksler, B.B.: Transforming growth factor-b activity is potentiated by heparin via dissociation of the transforming factor-b/a2-macro-globulin inactive complex. J. Cell. Biol. 109: 441–448 (1989)

    Article  CAS  Google Scholar 

  117. Majack, R.A.: Beta-type transforming growth factor specifies organizational behavior in vascular Smooth muscles cell culture. J. Cell. Biol. 105: 465–471 (1987)

    Article  PubMed  CAS  Google Scholar 

  118. Neufeld, G.D.; Gosporadowicz, D.; Dodge, L; Fujii, D.K.: Heparin modulation of acidic and basic fibrobalst growth factors and nerve growth factor on PC12 cells. J. Cell. Physiol. 131: 131–140 (1987)

    Article  PubMed  CAS  Google Scholar 

  119. Mooradian, A.D.: Effect of Aging on the Blood-Brain Barrier. Neurobiol. Aging 9:31–39 (1988)

    Article  PubMed  CAS  Google Scholar 

  120. Pardridge, W.M.; Regulation of amino acid availability to brain: selective control mechanism for glutamate. In: Glutamic acid: Advances in Biochemistry and Phisiology.(Filer, L.J.et all. New York Raven Press: 125–137 1979)

    Google Scholar 

  121. Mooradian, A.D.: The effect of ascorbate and dehydroascorbate on tissue uptake of glucose. Diabetes 36:1001–1004(1987)

    Article  PubMed  CAS  Google Scholar 

  122. Cornford, E.M.; Braun, L.D.; Oldendorf, W.H.: Carrier mediated blood-brain barrier tranport of choline and certain choline analogs. J.Neurochem. 30: 299–308 (1978)

    Article  PubMed  CAS  Google Scholar 

  123. Cornford, E.M.; Oldendorf, W.H.: Indipendent blood-brain barrier transport system for nucleic acid precursors. Biochem. Biophys.Acta 394: 211–219 (1975)

    Article  PubMed  CAS  Google Scholar 

  124. Greenwood, J.; Love, E.R.; Pratt, O.E.: Kinetic of thiamine transport across the blood-brain barrier. J. Physiol.(Lond) 327: 95–103 (1982)

    PubMed  CAS  Google Scholar 

  125. Oldendorf, W.H.: Carrier mediated blod-brain barrier transport of short chain monocarboxilic organic acids. Am.J.Phisiol. 224:1450–1453 (1973)

    CAS  Google Scholar 

  126. Pardridge, W.M.: Carrier mediated trasport of thyroid hormones through the rat blood-brain barrier: primary role of albumin-bound hormone. Endocrinology 105: 606–612 (1979)

    Article  Google Scholar 

  127. Pardridge, W.M.; Oldendorf, W.H.: Kinetic of blood-brain barrier transport of exoses. Biochem. Biophys. Acta 382: 377–392 (1975)

    CAS  Google Scholar 

  128. Hunziker, O.; Abdel’Al, S.; Frey, H.; Schulz, U.; Schweiezer, A.: Architecture of cerebral capillaries in aged human subjects with hypertension. In: Advances of Neurology: Pathology of Cerebral Microcirculation. (Vol 20, Cervos, J. et all. Raven Press New York: 471–477,1978)

    Google Scholar 

  129. Stewart, P.A.; Magliocco, P.; Hayakawa, K.; Farrell, R.; Del Maestro, F.; Girvin, J., Kaufmann, J.C.E.; Vinters, H.V.; Gilbert, J.: A quantitative analysis of blood brain barrier in the aging human. Microvasc. Res. 33:270–282(1987)

    Article  PubMed  CAS  Google Scholar 

  130. Pappolla, M.A.; Andorn, A.C.: Serum protein likage in aged human brain and inhibition of ligand binding at alpha 2 adrenergic and cholinergic binding sites. Synapse 1:82–89 (1987)

    Article  PubMed  CAS  Google Scholar 

  131. Fillit, H.M.; Kemeny, E.; Luine, V.; Weksler, M.E.; Zabriskie, J.B.: Antivascular antibodies in the sera of patients with senile dementia of the Alzheimer’s type. J. Geront.42: 180–184 (1987)

    PubMed  CAS  Google Scholar 

  132. Vorbrodt, A.W.; Lossinsky, A.S.; Wisniewski, H.M. et al.:Ultrastuctural cytochemical studies of cerebral microvasculature in scrapie infected mice. Acta Neuropathol. (Berlin) 53: 203–211 (1981)

    Article  PubMed  CAS  Google Scholar 

  133. Wisniewski, H.M.; Moretz, R.C.; Ivanowski, L.: Evidence for induction of localized amyloid deposit and neuritic plaques by an infectous agent. Ann. Neurol. 10:517–522 (1981)

    Article  PubMed  CAS  Google Scholar 

  134. Wilmes, F.; Hossman, K.A.: A specific immunofluorescence technique for the demonstration of vasogenic edema in paraffin embedded material. Acta Neuropathol.(Berlin) 45: 47–51 (1979)

    Article  PubMed  CAS  Google Scholar 

  135. Fazecas, A.; Komoly, S.: Specific demonstration of albumin by immunological techniques in human vasogenic edema. Acta Neuropathol.(Berlin) VII: 70–72 (1981)

    Google Scholar 

  136. Wisniewki, H.M.; Kozlowski, P.B.: Evidence for Blood-Brain Barrier Changes in Senile Dementia of the Alzheimer type (SDAT). Ann. New York Acad. Sci. 119–129 (1982): from the copy of the article no other information were available.

    Google Scholar 

  137. Ishii, T.; Haga, S.; Shimizu, F.: Identification of components at immunoglobulins in senile plaques by means of fluorescent antibody technique. Acta Neuropathol. 32: 157–162 (1975)

    Article  PubMed  CAS  Google Scholar 

  138. Ishii, T.; Haga, S.: Immunoelectron microscopic localization at immunoglobulins in amyloid fibrils of senile plaques. Acta Neuropathol. 36: 243–249 (1976)

    Article  PubMed  CAS  Google Scholar 

  139. Fischer, V.W.; Siddiqi, A.; Yusufaly, Y.: Altered angioarchitecture in selected areas of brains with Alzheiner’s disease. Acta Neuropathol. 79: 672–679 (1990)

    Article  PubMed  CAS  Google Scholar 

  140. Scheltens, P.; Barkhof, F.; Leys, D. et al.: Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45: 883–888 (1985)

    Google Scholar 

  141. Frackowiak, R.S.J.; Pozzilli, C.; Legg, N.J.: Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with oxygen-15 and positron tomography. Brain 104: 752–778 (1981)

    Article  Google Scholar 

  142. Frackowiak, R.S.J.: Energy metabolism and neurotransmitter function in aging and the dementia. In.:Heiss et al.: Clinical efficacy of positron emission tomography (Nijhoff Amsterdam: 158–174 1987)

    Google Scholar 

  143. Cutler, N.R.; Haxby, J.V.; Duara, R. et al.: Clinical history, brain metabolism, and neuropsycological function in Alzheimer’s disease. Ann. Neurol. 18: 298–309 (1985)

    Article  PubMed  CAS  Google Scholar 

  144. Haxby, J.V.; Duara, R.; Grady, C.L.; Rapoport, S.I.: Relation between neurophysiological and cerebral metabolic asymmetries in early Alzheimer’s disease. J. Cereb. Blood Flow Metab. 5: 193–200 (1985)

    Article  PubMed  CAS  Google Scholar 

  145. Eberling, J.L.; Jagust, W.J.; Reed, B.R.; Baker, M.G.; Reduced temporal lobe blood flow in Alzheimer’s disease. Neurobiol. Aging 13: 483–491 (1992)

    Article  PubMed  CAS  Google Scholar 

  146. Wolfe, N.; Reed, B.R.; Eberling, J.L.; Jagust, W.J: Temporal Lobe Perfusion on Single Photon Emissio Computed Tomography Predicts the Rate of Cognitive Decline in Alzheimer’s Disease. Arch. Neurol. 52: 257–262(1995)

    PubMed  CAS  Google Scholar 

  147. Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T.: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631–639 (1992)

    PubMed  CAS  Google Scholar 

  148. Berg, L.; McKeel, D.W.; Miller, J.P.; Baty, J.; Morris, J.: Neuropathological indexes of Alzheimer’s disease in demented and non demented person aged 80 and older. Arch. Neurol. 50: 349–358 (1993)

    PubMed  CAS  Google Scholar 

  149. Hyman, B.T.: Studying the Alzheimer’s Disease Brain. Insights, puzzels, and Opportunities. Neurobiology of aging. 15 suppl. 2: S79–S83 (1994)

    Article  PubMed  Google Scholar 

  150. Arnold, S.E.; Hyman, B.T.; Flory, J.; Damasio, A.R.; Van Hoesen, G.W.: The topografical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in cerebral cortex of patients with Alzheimer’s disease. Cereb. Cortex. 1: 103–116 (1991)

    Article  PubMed  CAS  Google Scholar 

  151. Bouras, C., Hof, P.; Giannakopoulos, P.; Michel, J.P.; Morrison, J.H.: Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients. A quantitative evaluation of one-year autopsy population in a geriatric hospital. Cereb. Cortex 4: 138–150 (1994)

    Article  CAS  Google Scholar 

  152. Hyman, B.T.; Tanzi, R.E.: Amyloid, dementia and Alzheimer’s disease. Curr. Opin. Neurol. Neurosurg. 5: 88–93 (1992)

    PubMed  CAS  Google Scholar 

  153. Beal, M.F.; Hyman, B.T.; Koroshetz, W: Does mithocondrial energy metabolism underlie the pathology of neurodegenerative diseases?. Trend Neurosci. 50: 349–358 (1993)

    Google Scholar 

  154. Simonian, N.A.; Hyman, B.T.: Functional alteration in Alzheimer’s disease: Diminution of cytochrome oxidase in the hippocampal formation. J. Nuropathol. Exp. Neurol. 52: 580–585 (1993)

    Article  CAS  Google Scholar 

  155. DeLacourte, A.; Defossez, A.: Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J.Neurol.Sci. 76: 173–186 (1986)

    Article  PubMed  CAS  Google Scholar 

  156. Grundke-Iqbal, I.; Iqbal, K.; Quinlan, M., et al.: Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J. Biol. Chem. 261: 6084–6089 (1986)

    PubMed  CAS  Google Scholar 

  157. Kosik, K.S.; Orecchio, L.D., Binder, L., Trojanowski, I.Q. et al.; Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1: 817–825 (1988)

    Article  PubMed  CAS  Google Scholar 

  158. Weingarten, M.D.; Lockwood, A.H.; Hwo, S.-Y; Kirshner, M.W: A protein factor essential for microtubule assembly. Proc.Natl. Acad. Sci. USA 72: 1858–1867 (1975)

    Article  PubMed  CAS  Google Scholar 

  159. Lee, V.M.-Y.; Daughenbaugh, R.; Trojanowski, J.Q.: Microtubule Stabilizing Drugs for the Treatment of Alzheimer’s disease. Neurobiolgy of Aging 15 suppl 2: S87–S89 (1994)

    Article  Google Scholar 

  160. Trojanowski, J.Q.; Lee, V.M.-Y.: Paired helical filament x in Alzheimerr’s disease: The kinase connection. Am. J. Pathol. 144: 449–453 (1994)

    PubMed  CAS  Google Scholar 

  161. Trojanowski, J.Q.; Schmidt, MX.; Shin, R.-W.; Bramblett, G.T. et al,: PHFτ (A68): From pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer disease. Clin. Neurosci. 1: 184–191 (1993)

    Google Scholar 

  162. Vandermeeren, M.; Mercken, M.; Vanmechelen, E., et al.: Detection of τ protein in Normal and Alzheimer’s Disease Cerebrospinal Fluid with a Sensitive Sandwich Enzime-Linked Immunosorbent Assay. J. Neurochem. 61. 1828–1834 (1993)

    Article  PubMed  CAS  Google Scholar 

  163. Vigo-Pelfrey C.; Seubert, P.; Barbour, R. et al.: Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiology 45: 788–793 (1995)

    CAS  Google Scholar 

  164. Wille, H.; Drewers, G.; Biernat, J.; Mandelkow, E.-M.; Mandelkow, E.: Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J. Cell. Biol. 118:573–584(1992)

    Article  PubMed  CAS  Google Scholar 

  165. Perry, G.; Siedlak, S.L.; Kawai, M.; Cras, P. et al.: Neurobibrillary tangles, neuropil threads and seniles plaques all contain abundant binding sites for basic fibroblastic growth factor (β-FGF). J. Neuropathol. Exp. Neurol. 49: 318 (1990)

    Article  Google Scholar 

  166. Siedlak, S.L.; Cras, P.; Kavai, M.; Richey, P., Perry, G.: Basic fibroblst growth factor binding is a marker for extracellular neurofibrillary tangles in alzheimer’s disease. J. Histochem, Cytochem, 39. 899–904 (1991)

    Article  CAS  Google Scholar 

  167. Perry, G.; Sieslak, S.L.; Richey, P.; Kawai, M. et al.: Association of Heparan Sulfate proteoglycan with Neurofibrillary Tangles of Alzheimer’s Disease.J. Neurosci.11: 3679–3683 (1991)

    PubMed  CAS  Google Scholar 

  168. Galloway, P.G.; Mulvihll, P.; Siedlak, S.L.; Mijars, M. et al.Immunochemical demonstration of tropomyosin in the neurofibrillary pathology of Alzheimer disease. Am. J. Pathol. 137: 291–300 (1990)

    PubMed  CAS  Google Scholar 

  169. Tabaton, M.; Perry, G.; Autilio-Gambetti, L.; Manetto, V; Gambetti, P.: Influence of Neuronal Location on Antigenic properties of Neurofibrillary Tangles. Ann. Neurol. 23: 604–610 (1988)

    Article  PubMed  CAS  Google Scholar 

  170. Carolyn, R.E.; Ala, T.A.; frey, W.H.: Ganglioside monoclonal antibody (A2B5) labels Alzheimer’s neurofibrillary tangles. Neurobiology 37: 768–772 (1987)

    Google Scholar 

  171. Mesulan, M.M.; Moran, M.A.: Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann.Neurol. 22: 223–228 (1987)

    Article  Google Scholar 

  172. Klier, F.G.; Cole, G.; Stallcup, W.; Schubert, D.: Amyloid b-protein precursor is associated with extracellular matrix. Brain Res. 515: 336–342 (1990)

    Article  PubMed  CAS  Google Scholar 

  173. Namba, Y., Tomonaga, M.; Kawasaki, H. et al.: Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Crutzfeld-Jakob disease. Brain Res. 541: 163–166 (1991)

    Article  PubMed  CAS  Google Scholar 

  174. Glenner, G.G.; Wong, C.W.: Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys.Res. Comm. 120: 885–890 (1984)

    Article  PubMed  CAS  Google Scholar 

  175. Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K.: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82: 4245–4249 (1985)

    Article  PubMed  CAS  Google Scholar 

  176. Kang, J.; Lemaire, H-G.; Unterbeck, A.; Salbaum, J.M.; Maters, C.L.; Grzeschik, K-H.; Multhaup, G.; Beyreuther, K.; Mller-Hill, B.: The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736 (1987)

    Article  PubMed  CAS  Google Scholar 

  177. Smith, C.; Anderton, B.H.: The Molecular pathology of Alzheimer’s disease: are we any closer to understanding the neurodegenerative process?. Neuropathol. Appl. Neurobiol. 20: 322–338 (1994)

    Article  PubMed  CAS  Google Scholar 

  178. Wisniewski, T.; Lalowski, M.; Levy, E.; Marques, M.R.F.; Frangione, B.: The amino acid sequence of neuritic plaque amyloid from a familial Alzeimer’s disease patient. Ann. Neurol. 35: 245–246 (1994)

    Article  PubMed  CAS  Google Scholar 

  179. Esch, F.S.; Keim, P.S.; Beattle, E.C.; Blasher, R.W.; Culwell, A.R.; Oltersdorf, T.; McClure, D.; Ward, D.: Cleavage of amyloid b peptide during consecutive processing of its precursor. Science 248: 1122–1126 (1990)

    Article  PubMed  CAS  Google Scholar 

  180. Sisodia, S.S.; Koo, E.H.; Beyreuther, K.; Unterbeck, A.; Price, D.L.: Evidence that b amyloid protein in Alzheimer disease is not derived by normal processing. Science 248: 492–496 (1990)

    Article  PubMed  CAS  Google Scholar 

  181. Saido, T.C.; Iwatsubo, T.; Mann, D.M.A.; Shimada, H.; Ihara, Y.; Kawashima, S.: Dominant and Differential Deposition of Distinct b-Amyloid Peptide Species, AbN3(pE), in Senile Plaques.Neuron 14: 457–466(1995)

    Article  PubMed  CAS  Google Scholar 

  182. Younkin, S.G.: Evidence that Ab42 Is the Real Culprit in Alzheimer Disease. Ann. Neurol. 3: 287–288 (1995)

    Article  Google Scholar 

  183. Zlokovic, B.V.; Martel, C.L.; Mackic, J.B.; Matsubara, E.; Wisniewski, T.; McComb, J.G.; Frangione, B.; Ghiso, J.: Brain uptake of circulating apolipoprotein J and E complexed to Alzheimer’s amyloid b. Biochem. Biophys. Res. Commun. 205: 1431–1437 (1994)

    Article  PubMed  CAS  Google Scholar 

  184. Golabek, A.; Marques, M.A.; Lalowski, M.; Wisniewski, T.: Amyloid b binding proteins in vitro and in normal human cerebrospinal fluid. Neurosci. Letter 191: 79–82 (1995)

    Article  CAS  Google Scholar 

  185. Shioi, J.; Anderson, P.J.; Ripellino, J.A.; Robakis, N.K.: Chondroitin sulfate Proteoglycan Form of Alzheimer’s bAmyloid Precursor. J. Biol.Chem. 267: 13819–13822 (1992)

    PubMed  CAS  Google Scholar 

  186. Van Nostrand, W.E.; Schmaier, A.H.; Farrow, J.S.; Cunningham, D.D.: Protease Nexin II (Amyloid b-Protein Precursor): A Platelet a-Granule Protein. Science 248: 745–748 (1990)

    Article  PubMed  Google Scholar 

  187. Ma, J.; Yee, A.; Brewer, H.B.; Das, S.; Potter, H.:The amyloid associated a1-chimotripsin and apolipoprotein E promote the assembly of Alzheimer’s b-protein into filaments. Nature 372: 92–94 (1994)

    Article  PubMed  CAS  Google Scholar 

  188. Strittmatter, W.J.; Saunders, A.M.; Smechel, D.; Pericak-Vance, M.; Enghild, J.; Salvensaen, G.S.; Roses, A.D.: Apolipoprotein E: High-avidity binding to b-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90: 1977–1981 (1993)

    Article  PubMed  CAS  Google Scholar 

  189. Das, S.; Potter, H.: Expression of the Alzheimer Amyloid-Promoting Factor Antichymotripsin is Induced in Human Astrocytes by IL-1. Neuron. 14: 447–456 (1995)

    Article  PubMed  CAS  Google Scholar 

  190. Snow, A.D.; Minsella, M.G.; Prather, P.B.; Nochlin, D.; Podlisny, M.B.; Selkoe, D.J.; Kisilevsky, R.; Hassel, J.R.; Wight, T.N.: A characteristic binding affinity between Heparan sulfate proteoglycans and A4 amyloid protein of Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 48: 352–361 (1989)

    Article  Google Scholar 

  191. Mesulam, M.-M.; Guela, C.; Moran, M.A.: Anatomy of Cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroamino-acridine on plaques and tangles. Ann. Neurol. 22: 683–691 (1987)

    Article  PubMed  CAS  Google Scholar 

  192. Mesulan, M.-M., Mora, M.A.. Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s patients. Nature (Lond.) 314: 90–92 (1985)

    Article  Google Scholar 

  193. Guela, C.; Mesulan, M.: Special properties of cholinesterases in the cerebral cortex of Alzheimer’s disease. Brain Reseach 498: 185–189 (1989)

    Article  Google Scholar 

  194. Eikelenboom, P.; Hach, C.E.; Rozemuller, J.M.; Stam, F.C.: Complement activation in amyloid plaques in Alzheimer’s dementia. Virchows Arch. B. Cell. Pathol. 56: 259–262 (1989)

    CAS  Google Scholar 

  195. Schwarzman, A.L.; Gregory, L.; Vitek, M.R; Lyubski, S.; Strittmatter, W.J.; Enghilde, J.J.; Bhasi, R.; Siverman, J.; Weisbraber, K.H.; Coyle, P.K.; Zagorski, M.G.; Talafous, J.; Eisenberg, M.; Saunders, A.M.; Roses, A.M.; Goldgaber, D.: Transthyretin sequestres amyloid b protein and prevents amyloid formation. Proc. Natl. Acad. Sci. USA 91: 8368–8372 (1994)

    Article  PubMed  CAS  Google Scholar 

  196. Cataldo, A.M.; Nixon, R.A.: Enzimatically Active Lysosomal Proteases Are Associated with Amyloid Deposits in Alzheimer Brain. Proc.Natl.Acad. Sci. USA 87: 3861–3865 (1990)

    Article  PubMed  CAS  Google Scholar 

  197. Bitter, T.; Muir, H.: Mucopolycaccharides of whole human spleen in generalized amyloidosis. J. Clin. Invest. 45:963–971 (1966)

    Article  PubMed  CAS  Google Scholar 

  198. Pennock, C.A.:Association of Acid Mucopolysaccharides with Isolated Amyloid Fibrils. Nature 217: 753–754(1968)

    Article  PubMed  CAS  Google Scholar 

  199. Snow, A.; Kisilevski, R.: Temporal Relationship between Glycosaminoglicans Accumulation and Amyloid Deposition during Experimental Amyloidosis. Lab.Invest. 53: 37–44 (1985)

    PubMed  CAS  Google Scholar 

  200. Willmer, J.P.; Snow, A.D.; Kisilevski, R.: The demonstration of sulfate glycosaminoglycans in association with the amyloidotic lesions in Alzheimer’s disease. I. Neuropathol. Exp. Neurol. 45: 340–346 (1986)

    Article  Google Scholar 

  201. Snow, A.D.; Willmer, J.; Kisilevski, R.: Sulfated Glycosaminoglycans: A Common Constituent of All Amyloidosis? Lab. Invest. 56: 120–123 (1987)

    PubMed  CAS  Google Scholar 

  202. Snow, A.D.; Kisilevsky, R.; Stephens, C; Anastassiades T.; Characterization of Tissue and Plasma Glycosaminoglycans during Experimental AA Amyloidosis and Acute Inflammation (Qualitative and Quantitave Analysis). Lab. Invest. 56: 665–675 (1987)

    PubMed  CAS  Google Scholar 

  203. Snow, D.A.; Wight, T.N.; Nochlin, D. et al.: Immunolocalization of Heparan Sulfate Proteoglycans to the Prion Protein Amyloid Plaques of Gerstmann-Straussler Syndrome, Creutzfeldt-Jakob Disease and Scrapie. Lab. Invest. 63: 601–611 (1990)

    PubMed  CAS  Google Scholar 

  204. Kalaria, R.N.; Kroon, S.N.; Grahovac, I.; Perry, G.: Acetyllcholinesterase and its association with heparan sulfate protoeglycans in cortical amyloid deposits of Alzheimer’s disease. Neuroscience 51: 177–184 (1992)

    Article  PubMed  CAS  Google Scholar 

  205. Buée, L.; Ding, W; Anderson, J.P. et al.: Binding of vascular heparan sulsate proteoglycan to Alzheimer’s amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Research 627: 199–204(1993)

    Article  PubMed  Google Scholar 

  206. Narindrasorasak, S.; Lowery, D.; Gonzales-DeWitt, P.; Poorman, R.A.; et al.: High Affinity Interaction between the Alzheimer’s b-Amiyloid Precursor Proteins and the Basement Membrane Form of Heparan Sulfate Proteoglycan. J. Biol. Chem: 20: 12878–12883 (1991)

    Google Scholar 

  207. Fredrickson, R.C.A.; Astroglia in Alzheimer’s disease. Neurobiol. Aging 13: 239–253 (1991)

    Article  Google Scholar 

  208. Fraser, P.E.; Nguyen, J.T.; Chin, D.T.; Kirschner, D.A.: Effect of sulfate ions on Alzheimer b/A4 peptide assemblies: implication for amyloid fibril-proteoglycan interaction. J. Neurochem. 59: 1531–1540 (1992)

    Article  PubMed  CAS  Google Scholar 

  209. Brunden K.R.; Richter-Cook, N.J.; Chaturvedi, N.; Frederikson R.C.A.: pH dependent Binding of Synthetic b-amyloid Peptides to Glycosaminoglycans. J.Neurochem. 61: 2147–2154 (1993)

    Article  PubMed  CAS  Google Scholar 

  210. Snow, A.D.; Sekiguchi, R.; Nicholin, D. et al: An inportant Role of Heparan Sulfate Proteoglycan (Perlecan) in a model System for the depositon and Persistence of Fibrillar Ab-Amyloid in Rat Brain. Neuron 12:219–234(1994)

    Article  PubMed  CAS  Google Scholar 

  211. Caughey, B.; Raymond, G.J.: Sulfated polyanion Inhibition of Scrapie-Associated PrP Accumulation in Cultured Cells. J.Virol. 67: 643–650 (1993)

    PubMed  CAS  Google Scholar 

  212. Farquhar, C.F.; Dickinson, A.G.: Prolongation of scrapie incubation period by an injection of dextransul-fate 500 within the month before or after infection. J. Gen. Virol. 67: 463–473 (1986)

    Article  PubMed  CAS  Google Scholar 

  213. Diringer, H.; Ehlers, B.: Chemoprophylaxis of scrapie in mice. J.Gen. Virol. 72: 457–460 (1991)

    Article  PubMed  CAS  Google Scholar 

  214. Prino, G: Pharmacological Profile of Ateroid. In:Ban, T.A.; Lehmann, H.E.: Diagnosis and Treatment of Old Age Dementias (Karger Basel 23: 68–75 1989)

    Google Scholar 

  215. Pescador, R.; Mantovani, M.; Niada, R.: Plasma lipoprotein rearramgment in the rabbit induced by mucopolysaccharides from mammalian tissue (Ateroid). Atherogenese 4: suppl IV: 210–216 (1979)

    CAS  Google Scholar 

  216. Pescador, R.; Diamantini, G.; Mantovani, M.; Malandrino, S.; Riva, A.; Casu, B.; Oreste, P.: Absorption by rat intestinal tract of fluorescin-labelled pig duodenal glycosaminoglycans. Arzneimittel-Frrsch. 30: 1893–1896(1980)

    CAS  Google Scholar 

  217. Pescador, R.; Madonna, M.: Pharmacokinetics of fluorescin-labelled glycosaminoglycans and of their lipoprotein lipase-inducing activity in the rat. Arzneimittel-Forsh. 32: 819–824 (1982)

    CAS  Google Scholar 

  218. Lorens, S.; Guschwan, B.S.; Norio, H; Van De Kar, L., Walenga, J.M.; Fareed, J.: Behavioral, Endocrine, and Neurochemical Effects of Sulfomucopolysaccharide Treatment in the Aged Fisher 344 Male Rat. Semin.Thromb. Haemost. 17 suppl 2: 164–173 (1991)

    Google Scholar 

  219. Strano, A.; Novo, S.; Davì, G.: Hypolipemic action of sulfomucopolysaccharides: clinical results and future prospects. In: Ricci et al.: Therapeutic selectivity and risk/benefit assessment of Hypolipemic drugs (Raven Press, New York 1982)

    Google Scholar 

  220. Passeri, M.; Cucinotta, D.: Ateroid in the Clinical Treatment of Multi-Infarct Dementia. In.Ban, T.A.; Lehmann, H.E.: Diagnosis and Treatment of Old Age Dementias (Karger Basel 23: 85–94 1989)

    Google Scholar 

  221. Conti, L.; Cassano, G.; Ban, T.A.; Fjetland O.K. et al.: Treatment of primary degenerative dementia and multi-infarct dementia with glycosaminoglycan polysulfate: a comparison of two diagnoses and two doses. Curr. Ther.Res. 54: 44–64 (1993)

    Article  Google Scholar 

  222. Conti, L.; Pacidi, G.F.; Cassano, G.: Ateroid in the Treatment of Dementia: Results of a Clinical Trial. In:Ban, T.A.; Lehmann, H.E.: Diagnosis and Treatment of Old Age Dementias (Karger Basel 23: 76–84 1989)

    Google Scholar 

  223. Ban, T.A.; Morey, L.C.; Aguglia, E. et al.: Glycosaminoglycan polysulphate in th treatment of old age dementias. Prog. Neuro- Psychopharmacol. Biol. Psychiat. 15: 323–342 (1991)

    Article  CAS  Google Scholar 

  224. Astengo, F.; Fontana, L.; Balestrieri.: Confronto indoppio cieco framucopolisaccaride solforato eplacebo nel trattmento di pazienti con insufficienza cerebrovascolare. Clin. Ter. 120: 219–226 (1987)

    PubMed  CAS  Google Scholar 

  225. Bardin, P., Campo, R.: Studio clinico controllato doppio cieco sull’impiego di Ateroid 200 nel trattamento di pazienti anziani con vasculopatia cerebrale. Clin.Ter. 120: 111–118 (1987)

    PubMed  CAS  Google Scholar 

  226. Perussia, M,: De Jacobis, M: Studio doppio cieco controllato per il confronto tra il trattamento con sulfomucopolisaccaridi (600 LRU/die) e placebo in pazienti anziani con insufficienza cerebrovascolare. Farmaci 10:255–229(1986)

    Google Scholar 

  227. Santini, V: A General Practice trial of Ateroid 200 in 8,776 Patients with Chronic Senile Cerebral Insufficiency. In:Ban, T.A.; Lehmann, H.E.: Diagnosis and Treatment of Old Age Dementias (Karger Basel 23: 95–100 1989)

    Google Scholar 

  228. Cotman, C.W.: Report of Alzheimer’s Disease Working Group A. Neurobiol. Aging 15 Suppl 2: S17–S22 (1994)

    Article  PubMed  Google Scholar 

  229. Faaber, P,: Capel, P.J.A.; Rijke, G.P.M., et al.: Cross reactivity of anti-DNA antibodies with proteoglycans: Clin. exp.Immun. 55: 502–508 (1984)

    PubMed  CAS  Google Scholar 

  230. Valdimarsson, H.: Baker, B.S.; J¢nsd¢ttir, I; Powels, A.; Fry, L.: Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunology Today 16:145–149 (1995)

    Article  PubMed  CAS  Google Scholar 

  231. Lindahl, B.; Eriksson, L.; Lindahl, U.:Structure of Heparan sulphate from human brain, with special regard to Alzheimer’s disease. Biochem. J. 306: 177–184 (1995)

    PubMed  CAS  Google Scholar 

  232. Parnetti, L.; Ban, T.A.; Senin,U.: Glycosaminoglycan Polisulfate in Primary Degenerative Dementia (pilot study of Biologic and Clinical Effects). Neuropsychobiology 31: 76–80 (1995)

    Article  PubMed  CAS  Google Scholar 

  233. Oreland, L.; Gottfries, C.G.: Brain monoamine oxidase in aging and dementia of Alzheimer’s type. Prog. Neuropsychopharm, Biol. Psychiatry 10: 533–549 (1986)

    Article  CAS  Google Scholar 

  234. Brane, G.; Gottfries, C.G.; Blennow, K.; Karlsson, I.; Leckan, A.; Parnetti, L.; Svennerholm L.; Wallin, A.: Monoamine metabolites in cerebrospinal fluid and behavioral rating in patients with early and late onset of Alzheimer dementia. Alzheimer Dis. Ass. Disord. 3: 148–156(1989)

    Article  CAS  Google Scholar 

  235. Parnetti, L.; Gottfries, J.; Karlson, I; Langstrom, G, Gottfries, CG.; Svennerholm, L:: Monoamines and their metabolites in cerebrospinal fluid of patients with senile dementia of Alzheimer type using high performance liquid chromatography-mass spectrometry. Acta Psychiatr. Scand. 75: 542–548 (1987)

    Article  PubMed  CAS  Google Scholar 

  236. Soininen, H.; MacDonald, E.; Rekonen, M.; Riekkinen, P.J.: Homovanillic acid and 5-hydroxy-indo-lacetic acid levels in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol. Scand. 64: 101–107(1981)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Cornelli, U. (1996). Non-Anticoagulant Actions of Glycosaminoglycans (GAGs). In: Harenberg, J., Casu, B. (eds) Nonanticoagulant Actions of Glycosaminoglycans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0371-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0371-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8021-4

  • Online ISBN: 978-1-4613-0371-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics