Skip to main content

Influence of Glycosaminoglycans on Natural Killer Cell Activity

  • Chapter
Nonanticoagulant Actions of Glycosaminoglycans

Abstract

NK cells represent a lymphoid subpopulation which is able to lyse certain tumor cells, virally infected cells, as well as blasts without prior sensibilisation or immunization. Originally, NK cell were characterized solely on their cytotoxic function as no surface markers for identification of these cells were available [1]. It could be demonstrated that NK cells are of large size and contain densely staining cytoplasmic azurophilic granules which coined them the designation “large granular lymphocytes” [2] However, it soon became apparent that NK cells could not be assigned to any known lymphocyte linage. The phenotyping of immune cells by means of mAb classified NK cells as a lymphoid subpopulation that does not express T cell receptors or surface immunoglobulins and which is characterized by the CD3- CD16+CD56+ surface phenotype [3] Further surface proteins typically found on NK cells are: CD2, CD11, CD25, CD54, CD57, and CD58 [4] Although NK-cells were initially identified in human peripheral blood where they make up to 5% of all lymphatic cells, they are also found in the spleen, lung intestinum, intestinal mucosa, liver sinusoid, and peritoneal cavity [5]. Recent data have substantially modified the general concept that NK cells lyse target cells in a non-MHC-restricted function since it has been shown that NK cells are capable of discriminating among different normal allogenic target cells. There is evidence that, at least in some instances, molecules recognized by NK cells are encoded by HLA class I genes expressed on target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lotzova E, McCredie KB. Natural killer cells in mice and man and their possible biological significance. Cancer Immunol Immunother 1978, 4:215–21.

    Article  Google Scholar 

  2. Timonen T, Ortaldo JR, Herberman RB. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J exp Med 1981, 569–82.

    Google Scholar 

  3. Lotzova E, Ades EW. Natural killer cells: definition, heterogeneity, lytic mechanism, functions and clinical application. Highlights of the Fifth International Workshop on natural killer cells, Hilton Head Island, N.C., March 1988. Nat Immun Cell Growth Regul 1989, 8:1–9.

    PubMed  CAS  Google Scholar 

  4. Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med 1990, 171:1509–26.

    Article  PubMed  CAS  Google Scholar 

  5. Oldham RK. Natural killer cells: history, relevance, and clinical applications. Nat Immun Cell Growth Regul 1990, 9:297–312.

    PubMed  CAS  Google Scholar 

  6. Ciccone E, Colonna M, Viale O, Pende D, Di DC, Reinharz D, Amoroso A, Jeannet M, Guardiola J, Moretta A, et al. Susceptibility or resistance to lysis by alloreactive natural killer cells is governed by a gene in the human major histocompatibility complex between BF and HLA-B. Proc Natl Acad Sci U S A 1990, 87:9794–7.

    Article  PubMed  CAS  Google Scholar 

  7. Moretta A, Bottino C, Pende D, Tripodi G, Tambussi G, Viale O, Orengo A, Barbaresi M, Merli A, Ciccone E, et al. Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med 1990, 172:1589–98.

    Article  PubMed  CAS  Google Scholar 

  8. Moretta A, Vitale M, Bottino C, Orengo AM, Morelli L, Augugliaro R, Barbaresi M, Ciccone E, Moretta L. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med 1993, 178:597–604.

    Article  PubMed  CAS  Google Scholar 

  9. Perussia B, Starr S, Abraham S, Fanning V, Trinchieri G. Human natural killer cells analysed by B73.1 a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol 1983, 130:2133–41.

    PubMed  CAS  Google Scholar 

  10. Domzig W, Stadler BM, Herberman RB. Interleukin 2 dependence of human natural killer (NK) cell activity. J Immunol 1983, 130:1970–79.

    PubMed  CAS  Google Scholar 

  11. Herberman RB. Natural killer cells. Anu Rev Med 1986, 37:347–352.

    Article  CAS  Google Scholar 

  12. Lotzova E. Definition and functions of natural killer cells. Nat Immun 1993, 12:169–76.

    PubMed  CAS  Google Scholar 

  13. Ortaldo J, Kantor R, Segal D, Bolhuis R, Bino T: Identification of a proposed NK receptor, in Ades, E,Lopez, C (eds.): Natural killer cells and host defense, Basel, Karger, 1989, p. 221–26

    Google Scholar 

  14. Evans DL, Jaso-Friedmann L, Smith EEJR, StJohn A, Koren HS, Harris DT. Identification of a putative antigen receptor on fish nonspecific cytotoxic cells with monoclonal antibodies. J Immunol 1988, 141:324–32.

    PubMed  CAS  Google Scholar 

  15. Chambers WH, Vujanovic NL, De LA, Olszowy MW, Herberman RB, Hiserodt JC. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med 1989, 169:1373–89.

    Article  PubMed  CAS  Google Scholar 

  16. Giorda R, Rudert WA, Vavassori C, Chambers WH, Hiserodt JC, Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science 1990, 249:1298–300.

    Article  PubMed  CAS  Google Scholar 

  17. Bezouska K, Yuen CT, O’Brirn J, Childs RA, Chai E, Lawson AM, Drbal K, Fiserova A, Pospisil M, Feizi T. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 1994, 372:150–157.

    Article  PubMed  CAS  Google Scholar 

  18. Chambers WH, Oeltmann TN. The effects of hexose 6-O-sulfate esters on human natural killer lytic function. J Immunol 1986, 137:1469–75.

    PubMed  CAS  Google Scholar 

  19. Stutman O, Dien P, Wisun RE, Lattime EC. Natural cytotoxic cells against sold tumors in mice: Blocking of cytotoxicity by D-mannose. Proc Natl Acad Sci USA 1980, 77:2895–98.

    Article  PubMed  CAS  Google Scholar 

  20. Forbes JT, Bretthauer RK, N. OT. Mannose 6-, fructose 1-, and fructose 6-phosphate inhibit natural cell-mediated cytotoxicity. Proc Nat Acad Sci 1981, 78:5797–802.

    Article  PubMed  CAS  Google Scholar 

  21. Ortaldo JR, Timonen TT, Herberman RB. Inhibition of activity of human NK and K cells by simple sugars: Discrimination between binding and postbinding events. Clin Immunol Immunolpath 1984, 31:439–43.

    Article  CAS  Google Scholar 

  22. Grayson G, Ladisch S. Immunosuppression by human gangliosides. II: Carbohydrate structure and inhibition of human NK activity. Cell Immunol 1992, 139:18–29.

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto H, Fuyama S, Arai S, Sendo F. Inhibition of mouse natural killer cytotoxicity by heparin. Cell Immunol 1985, 96:409–17.

    Article  PubMed  CAS  Google Scholar 

  24. Labrouche S, Freyburger G, Belloc F, Boisseau MR. Influence of selected heparins on human neutrophil functions in vitro. Thromb Haemost 1992, 68:556–62.

    PubMed  CAS  Google Scholar 

  25. Johann S, Blümel G, Lipp M, Förster R. A versatile flow cytometry based assay for the determination of short- and long-term natural killer cell activity. J Immunol Meth 1995, in press:

    Google Scholar 

  26. Johann S, Zoller C, Haas S, Blümel G, Förster R. Anticoagulant glycosaminoglycans activate respiratory burst in neutrophils and monocytes. Clin Appl Throm Haemost 1995, in press:

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Förster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Johann, S., Förster, R. (1996). Influence of Glycosaminoglycans on Natural Killer Cell Activity. In: Harenberg, J., Casu, B. (eds) Nonanticoagulant Actions of Glycosaminoglycans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0371-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0371-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8021-4

  • Online ISBN: 978-1-4613-0371-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics