Advertisement

Modulatory Role of Heparin and Heparan Sulfates on Angiogenesis

  • Giovanni Camussi
  • E. Battaglia
  • Enrico Lupia
  • G. Montrucchio

Abstract

The growth of new capillary blood vessels has an important role in physiological conditions such as the development of the embryo, the formation of corpus luteum and the wound healing.1–3 It has been suggested that angiogenesis is essential to the repair of peptic ulcer4 and myocardial infarction.5 This process is in physiological conditions highly regulated in order to limit the growth of new blood vessels to the repaired tissue. Angiogenesis is also involved in pathological processes such as chronic inflammation6 and growth of most solid tumors.7–10 In these conditions an unregulated growth of blood vessels may contribute to the development of persistent tissue injury or to the invasiveness or the increasing metastatic potential of certain tumors.10 Recent studies have focused on the isolation and characterization of diffusable angiogenic factors produced by tumor or inflammatory cells able to promote the outgrowth of new vessels.10 A number of polypeptide mediators have been shown to modulate angiogenesis either by stimulating or inhibiting formation of new vessels. Among these factors, acid and basic fibroblast growt factor (aFGF and bFGF),11 trasforming growth factor α and ß (TGF α and ß)12–13, tumor necrosis factor α (TNFa),14–16 interleukin-8 (IL-8),17–19 vascular endothelial growth factor (VEGF),20 hepatocyte growth factor (HGF),21-22 angiotropin,23 angiogenin,24 glycosilation end products,25 ialuronyc acid degradation products26 and platelet-activating factor (PAF)16–27 were reported to be angiogenic. In contrast, many compounds have been described as inhibitors of angiogenesis including platelet factor-4 (PF4),28 tissue inhibitors of metalloproteinases (TIMP),29–30 thrombospondin,31,32 laminin-peptides33 and sulfate chytin derivatives.34

Keywords

Vascular Endothelial Growth Factor Hepatocyte Growth Factor Heparan Sulfate Basic Fibroblast Growth Factor Capillary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folkman J, Klagsbrun M. Angiogenic Factors. Science 235: 442–447,1987.PubMedCrossRefGoogle Scholar
  2. 2.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem 267: 10931–10934, 1992.PubMedGoogle Scholar
  3. 3.
    Hunt TK, Knighton DR, Thakral KK, Goodson III WH, Andrews WS. Studies on inflammation and would healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery 96: 48–54, 1984.PubMedGoogle Scholar
  4. 4.
    Folkman J,Szabo S, Stovroff M, McNeil P, Li W, Shing Y. Duodenal Ulcer: discovery of a new mechanism and development of angiogenic therapy wich accelerates healing. Annals of Surgery 214: 414–427, 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Gary LE, Dionne CA, Jaye MC. Acid fibroblast growth factor and heart development. Circul Res 72: 7–19, 1993.Google Scholar
  6. 6.
    Colville-Nash PR, Scott DL. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Annals of the Rheumatic Disease 51: 919–925,1992.CrossRefGoogle Scholar
  7. 7.
    Folkman J. Tumor angiogenesis factor. Cancer Res, 34: 2109–2113, 1974.PubMedGoogle Scholar
  8. 8.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastatis — correlation in invasive breast carcinoma. New Engl J Med 324: 1–8, 1990.CrossRefGoogle Scholar
  9. 9.
    Horak ER, Leek R, Klemk N, Lejeune S, Smith K, Stuart N, Greenall M, Stepniewska K, Harris AL. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340: 1120–1124,1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 8: 401–407,1994.PubMedGoogle Scholar
  11. 11.
    Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocrine Reviews 8: 95–113, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LA, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS. Trasforming growth factor ß: rapid induction of fibrobis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–4171, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang EY, Moses HL. Trasforming growth factor ß1-induced changes in cell migration, proliferation, and angiogenesis in the chick chorioallantoic membrane. J Cell Biol 11: 731–741, 1990.CrossRefGoogle Scholar
  14. 14.
    Frater-Schroder M, Risau W, Hallaman R, Gautschi P, Bohlen P. Tumor-necrosis factor type a, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84: 5277, 1987.PubMedCrossRefGoogle Scholar
  15. 15.
    Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumor necrosis factor-α. Nature 239: 630, 1987.CrossRefGoogle Scholar
  16. 16.
    Montrucchio G, Lupia E, Battaglia E, Passerini G, Bussolino F, Emanuelli G, Camussi G. Tumor Necrosis Factor a-induced angiogenesis depends on in situ Platelet-activating Factor. J Exp Med 180: 377–382, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Einer VM, Einer SG, Strieter RM. Interleukin-8 as a macrophage-derived mediator of angiogenesis.Science 258: 1798, 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Strieter RM, Kunkel SL, Einer VM, Martonyi CL, Koch AE, Polverini PJ, Einer SG. A corneal factor that induces neovscularization. Am J Pathol 141: 1279, 1992.PubMedGoogle Scholar
  19. 19.
    Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM. Inhibition of interleukin-8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409, 1994.PubMedCrossRefGoogle Scholar
  20. 20.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119(3): 629–641, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL, Polverini P, Rosen EM. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 90: 1937–1941, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Hockel M, Jung W, Vaupel P, Rabes H, Khaledpour C, Wissler JH. Purified monocyte-derived angioenic substance (angiotropin) induces controlled angiogenesis associated with regulated tissue proliferation in rabbit skin. J Clin Invest 82: 1075–90, 1988.PubMedCrossRefGoogle Scholar
  24. 24.
    Hallahan TW, Shapiro R, Vallee BL. Dual site model for the organogenic activity of angiogenin. Proc Natl Acad Sci USA 15: 2222–6, 1991.CrossRefGoogle Scholar
  25. 25.
    Cozzolino F, Torcia G, Ziehe M, Ogawa S, Brett J, Koga S, Vlassara H, Nawroth P, Stern D. Advanced glycosylation endproducts (AGEs) stimulate endothelial cell (EC) growth in vitro and in vivo. Circulation 82: III 36, 1990.Google Scholar
  26. 26.
    West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 228: 1324–1326, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Camussi G, Montrucchio G, Lupia E, De Martino A, Perona L, Arese M, Vercellone A, Toniolo A, Bussolino F. Platelet-Activating Factor directly stimulates in vitro migration of endothelial cells and promotes in vivo angiogenesis by a heparin-dependent mechanism. J Immunol (in press), 1995.Google Scholar
  28. 28.
    Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ. Inhibition of angiogenesis by recombinant humn Platelet Factor-4 and related peptides. Science 247: 77–79, 1990.PubMedCrossRefGoogle Scholar
  29. 29.
    Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 248: 1408–1413, 1990.PubMedCrossRefGoogle Scholar
  30. 30.
    Johson MD, Kim HRC, Chesler L, Tsao-Wu G, Bouck N, Polverini PJ. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 160: 194–202, 1994.CrossRefGoogle Scholar
  31. 31.
    Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87: 6624–6628,1990.PubMedCrossRefGoogle Scholar
  32. 32.
    Arispe MLI, Borstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci USA 88: 5026–5030, 1991.CrossRefGoogle Scholar
  33. 33.
    Sakamoto N, Iwahana M, Tanaka NG, Osada Y. Inhibition of angiogenesis and tumor growth by synthetic laminin peptide CDPGYIGSR-NH2. Cancer Res 51: 903–906, 1991.PubMedGoogle Scholar
  34. 34.
    Murata J, Saiki I, Makabe T, Tsuta Y, Tokura S, Azuma I. Inhibition of tumor-induced angiogenesis by sulfated chitin derivatives. Cancer Res 51: 22–26, 1991.PubMedGoogle Scholar
  35. 35.
    Kessler DA, Langer RS, Pless NA, Folkman J. Mast cells and tumor angiogenesis. Int J Cancer 18: 703–709, 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Azizkhan R, Azizkhan J, Zetter B, Folkman J. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 152: 931–944, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    Klagsbrun M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)-heparin and heparan sulfate interactions. Seminars in Cancer Biology 3: 81–87, 1992.PubMedGoogle Scholar
  38. 38.
    Lobb RR, Sasse J, Sullivan R, Shing Y, D’Amore P, Jacobs J, Klagsburn M. Purification and characterization of heparin-binding endothelial cell growth factors. J Biol Chem 261:1924–1298, 1986.PubMedGoogle Scholar
  39. 39.
    Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher J. Interaction of Hepatocyte Growth Factor with heparan sulfate. J Biol Chem 269:15, 11216–11223, 1994.PubMedGoogle Scholar
  40. 40.
    Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Bhiophys Res Commun 161:851–855, 1989.CrossRefGoogle Scholar
  41. 41.
    Crum R, Szabo S, Folkman J. Anew class of steroids inhibits angiogenensis in the presence of heparin or a heparin fragment. Science 230: 1375–1378, 1985.PubMedCrossRefGoogle Scholar
  42. 42.
    Folkman J, Ingber DE. Angiostatic steroids: method of discovery and mechanism of action. Ann Surg 206: 374–382, 1987.PubMedCrossRefGoogle Scholar
  43. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 58: 575–606, 1989.PubMedCrossRefGoogle Scholar
  44. Klagsburn M. The affinity of fibroblast growth factors (FGF) for heparin; FGF-heparan sulfate interaction in cell and extracellular matrix. Curr Opin Cell Biol 2: 857–953, 1990.CrossRefGoogle Scholar
  45. 43.
    Thornton S, Mueller S, Levine E. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222:623–625, 1983.PubMedCrossRefGoogle Scholar
  46. 44.
    Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. A simple, quantitative method for assessing angiogenesis and antiangiogenic using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67: 519–528, 1992.PubMedGoogle Scholar
  47. 45.
    Spivak-Kroizman T, Lemmon MA,Dikic I, Ladbury JE, Pinchasi J, Jaye M, Crumley G, Schlessinger J, Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation and cell proliferation. Cell 79:1015–1024, 1994.PubMedCrossRefGoogle Scholar
  48. 46.
    Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848, 1991.PubMedCrossRefGoogle Scholar
  49. 47.
    Coughlin SR, Barr PJ, Cousens LS, Fretto LJ, Williams LT. Acidic and basic fibroblast growth factors stimulate tyrosine kinase activity in vivo. J Biol Chem 263, 988–933, 1988.PubMedGoogle Scholar
  50. 48.
    Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 131, 123–130, 1987.PubMedCrossRefGoogle Scholar
  51. 50.
    Sudhalter J, Folkman J, Svahn CM, Bergendal K, D’Amore P. Importance of size, sulfation and anticoagulant activity in the potentiation of acidic fibroblast growth factor by heparin. J Biol Chem 264: 6892–6897, 1989.PubMedGoogle Scholar
  52. 51.
    Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochem 28: 1737–1743, 1989.CrossRefGoogle Scholar
  53. 52.
    Flaumenhaft R, Moscatelli D, Saksela O, Rifkin DB. Role of extracellular matrix in the action of basic fibroblast growth factor: matrix as a source of growth factor for longterm stimulation of plasminogen activator production and DNA synthesis. J Cell Physiol 140: 75–81, 1989.PubMedCrossRefGoogle Scholar
  54. 53.
    Ruoslahti E, Yamaguchi Y Proteoglycans as modulators of growth factor activities. Cell 64: 867–869, 1991.PubMedCrossRefGoogle Scholar
  55. 54.
    Gospodarowicz D, Cheng J. Heparin protects basic and acid FGF from inactivation. J Cell Physiol 128: 475–484, 1986.PubMedCrossRefGoogle Scholar
  56. 55.
    Sommer A, Rifkin D. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol 138: 215–220,1989.PubMedCrossRefGoogle Scholar
  57. 56.
    Saksela O, Moscatelli D, Sommer A, Rifkin DB. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 107: 743–751,1988.PubMedCrossRefGoogle Scholar
  58. 57.
    Presta M, Maier JAM, Rusnati M, Ragnotti G. Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol 140:68–74, 1989.PubMedCrossRefGoogle Scholar
  59. 58.
    Taylor S, Folkam J. Protamine is an inhibitor of angiogenesis. Nature 297: 307–312, 1982.PubMedCrossRefGoogle Scholar
  60. 59.
    Unger EF, Sheffield CD, Epstein SE. Heparin promotes the formation of extracardiac to coronary anastomoses in a canine model. Am J Physiol 260: 11 1625–1634, 1991.Google Scholar
  61. 60.
    Quyyumi A A, Diodati JG, Lakatos E, Bonow RO, Epstein SE. Angiogenic effects of low molecular weight heparin in patients with stable coronary artery disease: a pilot study. J Am Coll Cardiol 22:635–641,1993.PubMedCrossRefGoogle Scholar
  62. 61.
    Norrby K, Sorbo J. Heparin enhances angiogenesis by a systemic mode of action. Int J Exp Path 73: 147–155, 1992.Google Scholar
  63. 62.
    Norrby K. Heparin and angigenesis: a low molecular-weight fraction inhibits and high-molecular weight fraction stimulates angiogenesis systematically. Haemostasis 23 (Suppl.1): 141–149, 1993.PubMedGoogle Scholar
  64. 63.
    Robertson N, Discafani CM, Downs EC, Hailey JA, Sarre O, Runkle RL, Popper TL, Plunkett ML. A quantitative in vivo mouse model used to assay inhibitors of tumor-induced angiogenesis. Canc Res 51: 1339–1344, 1991.Google Scholar
  65. 64.
    Neufeld G, Gospodarowicz D. Protamine sulfate inhibits mitogenic activities of the extracellular matrix and fibroblast growth factor, but potentiates that of epidermal growth factor. J Cell Physiol 132: 287–294, 1987.PubMedCrossRefGoogle Scholar
  66. 65.
    Frazier WA. Thrombospondins Curr Opin Cell Biol 3: 792–799, 1991.Google Scholar
  67. 66.
    Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56: 345–355, 1989.PubMedCrossRefGoogle Scholar
  68. 67.
    Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin — 1 have anti-angiogenic activity. J Cell Biol 122: 497–511, 1993.PubMedCrossRefGoogle Scholar
  69. 68.
    Dethlefsen SM, Matsuura N, Zetter BR. Tumor growth and angiogenesis in wild type and mast cell deficient mice. FASEB J 4: A623 (Abstract 2070), 1990.Google Scholar
  70. 69.
    Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719–725, 1983.PubMedCrossRefGoogle Scholar
  71. 70.
    Thorpe PE; Derbyshire E J, Andrade SP, Press N, Knowles PP, King S, Watson GJ, Yang YC, Rao-Bette M. Heparin-steroid conjugates: new angiogenesis inhibitors with antitumor activity in mice. Canc Res 53: 3000–3007, 1993.Google Scholar
  72. 71.
    Folkamn J, Weisz PB, Jouillè MM, Li WW, Ewing WR. Control of angiogenesis with synthetic heparin substitutes. Science 243: 1490–1493, 1989.CrossRefGoogle Scholar
  73. 72.
    Li WW, Casey R, Gonzales EM, Folkman J. Angiostatic steroids potentiated by sulfated cyclodextrins inhibit corneal neovascularization. Investigate Ophtalmol Visual Sci 32: 2898–2905, 1991.Google Scholar
  74. 73.
    Pereles T, Ihgber DE, Folkman J. Inhibition of capillary endothelial cell outgrowth: the role of complex formation between angiostatic steroid and beta-cyclodextrin tetradecasulfate. J Cell Biol 109: 311 a, 1989.Google Scholar
  75. 74.
    Ziehe M, Ruggiero M, Pasquali F, Chiarugi VP. Effects of cortisone with and without heparin on angiogenesis induced by prostaglandi E1 and by S180 cells, and on growth of murine transplantable tumours. Int J Cancer 35: 549–552, 1985.CrossRefGoogle Scholar
  76. 75.
    Tamargo R, Leong KW, Brem H. Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. J Neuoroncol 9: 131–138, 1990.CrossRefGoogle Scholar
  77. 76.
    Pesenti E, Sola F, Mongelli N, Grandi M, Spreafico F. Suramin prevents neovascularization and tumor growth through blocking of basic fibroblast growth factor activity. Br J Cancer 66: 367–372, 1992.PubMedCrossRefGoogle Scholar
  78. 77.
    Myers C, Cooper M, Stein C, La Rocca R, Walther MM, Weiss G, Choyke P, Dawson N, Steinberg S, Uhrich MM, Cassidy J, Kohler DR, Trepel J, Linehan WM. Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer. J Clin Oncol 10: 881–889,1992.PubMedGoogle Scholar
  79. 79.
    Wellstein A, Zugmaier GJAC, Kern F, Paik S, Lippman ME. Tumor growth dependent om Kaposi’s sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate. J Natl Cancer Inst 83: 716–720, 1991.PubMedCrossRefGoogle Scholar
  80. 80.
    Zugmaier G, Lippman ME, Wellstein A. Inhibition by pentosan polysulfate (PPS) of heparin-binding growth factors released from tumor cells and blockage by PPS of tumor growth in animals. J Natl Cancer Inst 84: 1716–1724, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Giovanni Camussi
    • 1
  • E. Battaglia
    • 2
  • Enrico Lupia
    • 2
  • G. Montrucchio
    • 2
  1. 1.Cattedra di Nefrologia, Istituto di Medicina e Sanità Pubblica, II Facoltà di MedicinaUniversità di PaviaVareseItaly
  2. 2.Dipartimento di Fisiopatologia ClinicaUniversità di TorinoItaly

Personalised recommendations