Magnetic Equilibrium Reconstruction Techniques for Tokamak Reactors

  • Enzo Lazzaro


The successful operation and performance of both present-day experimental tokamaks and future tokamak reactors, such as ITER, relies heavily upon an accurate determination of plasma position, shape and energy content, and on other global and local equilibrium quantities. Part of this information is required on a real-time basis to allow control of the discharge and possibly, in a reactor, on-line improvements of performances. For in-depth scientific analysis of the results and comparison with theory, however, it is also necessary to perform, both as snapshots and as historic time-evolution, off-line equilibrium reconstructions from the available measurements. As a rule, this is required with high space- and time-resolution and high accuracy.


Pitch Angle Plasma Boundary Plasma Position Tokamak Reactor Shafranov Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. De Kock et al., this volume.Google Scholar
  2. J. BlumNumerical Simulation and Optimal Control in Plasma Physics, Gauthiers Villars, Paris (1989).Google Scholar
  3. J. Blum, E. Lazzaro, J. O’Rourke, B. Keegan and Y. StephanNucl Fus. 30: 1475 (1990).CrossRefGoogle Scholar
  4. F. Alladio and F. CrisantiNucl. Fus 25: 1421 (1985).CrossRefGoogle Scholar
  5. A. Tikhonov, V. ArseninMethodes de resolution de problemes malposees, MIR Ed., Moscow (1974).Google Scholar
  6. M. Bertero, C. De Mol and E.R. PikeInverse Problems, 1:301 (1985); 4: 3573 (1988).Google Scholar
  7. G.I. MarchukMethods of Numerical Mathematics, 2nd ed., Springer, N. Y. (1982).Google Scholar
  8. W. Feneberg, K. Lackner and P. MartinComput. Phys. Comm 31: 143 (1984).CrossRefGoogle Scholar
  9. S.P. Hirshman et al.Phys.Plasmas, 1: 2277 (1994).CrossRefGoogle Scholar
  10. L.E. Zakharov, V.D. ShafranovSov. Phys. Tech. Phys , 18: 151 (1973).Google Scholar
  11. L.L. Lao, H. St John, R.D. Stambaugh, W. PfeifferNucl. Fus 25: 1421 (1985).CrossRefGoogle Scholar
  12. J. Bendat, A. PiersolRandom Data: Analysis and Measurement Procedures, J. Wiley, N. Y. (1971).Google Scholar
  13. G.A. Cottrell, E.S. Fairbanks, R.E. StockdaleRev.Sci.Instrum, 56: 984 (1985).CrossRefGoogle Scholar
  14. H. SoltwischXI EPS Conf. Contr. Fusion and Plasma Phys , Aachen, 7D-I: 123 (1983).Google Scholar
  15. J. O’Rourke and E. LazzaroXVII EPS Conf. Contr. Fusion and Plasma Phys , Amsterdam, 14B-I: 343 (1990).Google Scholar
  16. S.E. Segro,Phys.Plasmas2: 2908 (1995).CrossRefGoogle Scholar
  17. D. Wrobleski and L.L.LaoRev.Sci.Instrum, 63: 5140 (1992).CrossRefGoogle Scholar
  18. S.P. Hakkarainen and J.P. Freidberg, MIT Rep. FC/RR-87-22, DOE/ET-501013-244 (1987).Google Scholar
  19. J.J. Ellis et al.IAEA Techn. Meeting on Magn. Diagn. for Fusion Plasmas, Kharkov, Ukraine (1994)Google Scholar
  20. P. ShkarofskyPhys.Fluids25: 89 (1982).CrossRefGoogle Scholar
  21. V.D. ShafranovPlasma Phys , 13: 757 (1971).CrossRefGoogle Scholar
  22. J.P. Christiansen and J.B. TaylorNucl. Fus 22: 111 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Enzo Lazzaro
    • 1
  1. 1.Istituto di Fisica del PlasmaCNR-ENEA-Euratom AssociationMilanoItaly

Personalised recommendations