Skip to main content

Abstract

X-ray diagnostics are used on present-day tokamaks to measure a variety of plasma parameters. 1,2 Some x-ray diagnostics are not directly adaptable to ITER because of the high sensitivity of the detectors to noise and damage induced by the radiation background from fusion neutrons.3,4 Those diagnostics which use compact, highly efficient solid-state detectors are particularly vulnerable. This work addresses mainly the issues involved in adapting a subset of the existing x-ray instrumentation to ITER, mainly by use of additional x-ray optics to deflect the x-ray beam out of the path of the neutron beam. 5,6,7 The topics discussed will be the required x-ray intensities and energy ranges, the necessary reduction in radiation background, and the x-ray optics and geometries best suited to accomplishing these requirements. Preliminary work on this subject appears in Refs. 5–7. We will be focusing on the x-ray energy range around 5 – 40 keV, and somewhat higher in some cases. The main diagnostics discussed are the XIS (X-Ray Imaging System) or SX arrays, the broad-band PHA (Pulse-Height-Analyzer) continuum and line measurement spectrometer, and the high energy resolution XCS (X-ray Crystal Spectrometer). 2 Other diagnostics suitable for ITER have been discussed by Barnsley. 8,9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. W. Hill, M. Bitter, et al., Tokamak Physics Studies Using X-Ray Diagnostic Methods, in Proceedings of the Course and Workshop on Basic and Advanced Fusion Plasmas, Diagnostic Techniques (Varenna (Como), Italy, September 1986), (Monotypia Franchin, Citta’ di Castello, Italy and Office for Official Publications of the European Communities, Luxembourg, Belgium, 1987), edited by P. Stott, D. K. Akulina, G. G. Leotta, E. Sindoni, and C. Wharton, Vol. I, pp. 169–200

    Google Scholar 

  2. K. W. Hill, P. Beiersdorfer, et al., Tokamak X-Ray Diagnostic InstrumentationIbid pp. 201–226.

    Google Scholar 

  3. S. von Goeler, K. W. Hill, et al., X-Ray Diagnostics for TFTR, Proceedings of the Course, Diagnostics for Fusion Reactor Conditions, Varenna, Italy, September 1982, Vol. I, pp. 69–85

    Google Scholar 

  4. K. W. Hill, H. Adler, et al., Analysis of nuclear-radiation-induced noise in spectroscopic and x-ray diagnostics during high power deuterium-tritium experiments on the tokamak fusion test reactorRev. Sci. instrum 66, 913 (1995).

    Google Scholar 

  5. K. W. Hill, K. M. Young, et al., ITER X-Ray Diagnostic StudiesRev. Sci. Instrum 63, 5032(1992)

    Google Scholar 

  6. K. W. Hill, M. Bitter, et al., Design Studies for ITER X-Ray Diagnostics, Princeton University, Plasma Physics Laboratory Report PPPL-3034 (January 1995)

    Google Scholar 

  7. K. W. Hill, M. Bitter, et al., ITER X-Ray Fluctuation Diagnostic Possibilities, Princeton University, Plasma Physics Laboratory Report PPPL-3008 (February 1995)

    Google Scholar 

  8. R. Barnsley et al., Bragg spectroscopy of impurities during the JET preliminary tritium experimentRev. Sci. Instrum 63, 5023 (1992)

    Google Scholar 

  9. R. Barnsley et al.X-ray spectroscopy for ITER presented by N. Peacock at the ITER Progress Meeting on Spectroscopic Systems, Kurchatov Institute, Moscow, Russia, Nov. 29 – Dec. 1, 1994.

    Google Scholar 

  10. K. McGuire, R. J. Colchin, et al., Diagnostic Applications of the TFTR XIS SystemRev. Sci. Instrum 57, 2136 (1986)

    Google Scholar 

  11. M. Bitter, S. von Goeler, et al., Doppler-Broadening Measurements of X-Ray Lines for Determination of the Ion Temperature in Tokamak PlasmasPhys. Rev. Lett 42, 304 (1979)

    Google Scholar 

  12. K. W. Hill, M. Bitter, et al., Studies of Impurity Behavior in TFTRNucl. Fusion 26, 1131 (1986)

    Google Scholar 

  13. S. von Goeler, J. E. Stevens, et. al., Angular Distribution of the Bremsstrahlung Emission During Lower-Hybrid Current Drive on PLTNucl. Fusion 25, 1515 (1985)

    Google Scholar 

  14. N. Madden, Lawrence Berkeley National Laboratory, private conversation.

    Google Scholar 

  15. D. H. Bilderback and S. Hubbard, X-Ray Mirror Reflectivities from 3.8 to 50 keV, Part II - Pt, Si, and Other MaterialsNucl. Instrum. Methods 195, 91 (1982)

    Google Scholar 

  16. Martin Elvis, Daniel G. Fabricant, and Paul Gorenstein, Grazing Incidence Imaging from 10 to 40 keVSPIE Vol. 830, 296 (1988)

    Google Scholar 

  17. A. F. Jankowski and D. M. Makowiecki, Manufacture, Structure, and Performance of W/B4C Multilayer X-Ray Mirrors, in X-Ray Multilayers for Diffractometers, Monochromators, and Spectrometers Ed. Finn E. Christensen, (SPIE, Bellingham, WA 1988), Vol. 984, p. 64

    Google Scholar 

  18. Anthony Burek, Crystals for Astronomical X-Ray SpectroscopySpace Science Instrum 2, 53 (1976)

    Google Scholar 

  19. K. D. Joensen, F. E. Christensen, et al., Medium-Sized Grazing-Incidence High- Energy X-Ray Telescopes Employing Continuously Graded Multilayers, Proc. SPIE 1736, p. 236 (1992)

    Google Scholar 

  20. Peter Hoghoj, Eric Ziegler, et al., Broad-Band Focusing of Hard X-Rays using a Supermirror, in Physics of X-Ray Multilayer Structures 1994 Technical Digest Series (Optical Society of America, 1994), Vol VI, p. 142

    Google Scholar 

  21. K. D. Joensen, P. Hoghoj, et al., Multilayered supermirror structures for hard x-ray synchrotron and astrophysics instrumentation, in Multilayer and Grazing Incidence X- Ray/EUV Optics II SPIE proc. 2011, (1993)

    Google Scholar 

  22. M. A. Goldman, K. W. Hill, et al., A Gridded Ionization Chamber for Detection of X- Ray Wave Activity in Tokamak PlasmasRev. Sci. Instrum 56, 349 (1985)

    Google Scholar 

  23. J. A Penkethman, Layered Synthetic Microstructure X-Ray Mirror Focusing Instrument: Bent Silicon Wafer SubstrateOptical Engineering 27, 99 (1988)

    Google Scholar 

  24. D. Parsignault and A. S. Krieger, X-Ray Fiber Optics from 60 eV to 10 keV, in X-Ray Detector Physics and Applications edited by R. Hoover, (SPIE, Bellingham, WA 1992), Vol. 1736

    Google Scholar 

  25. S. H. Moseley, J. C. Mather, D. McCammon, Thermal Detectors as X-Ray SpectrometersJ. Appl. Phys 56, 1257 (1984)

    Google Scholar 

  26. M. Bitter, H. Hsuan, et al., Spectra of Heliumlike Krypton from Tokamak Fusion Test Reactor PlasmasPhys. Rev. Lett 71, 1007 (1993)

    Google Scholar 

  27. M. Bitter, H. Hsuan, et al., X-Ray Spectra of Heliumlike Krypton as a Potential Ion–Temperature Diagnostic for the International Thermonuclear Experimental Reactor (ITER)Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion (Elsevier Science Publishers, 1993), edited by R. K. Janev and H. W. Drawin, pp. 119–133

    Google Scholar 

  28. V. A. Bryzgunov, A. B. Gil’varg, and A. N. Svetchkopal, X-Ray Optics for ITER Spectrometer, Russian Research Center Kurchatov Institute report number IAE-5645/14 (Moscow 1993), presented at the Sixth National Topical Conference on High Temperature Plasma Diagnostics, St. Petersburg, May 26 1993

    Google Scholar 

  29. M. Bitter, B. Fraenkel, K. W. Hill, H. Hsuan, and S. von Goeler, Numerical Study of the Imaging Properties of Doubly-Focusing Crystals, paper 3.22, presented at the 10th Topical Conference on High Temperature Plasma Diagnostics, 8–12 May, 1994, Rochester, N. YRev. Sci. instrum 66, 530 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Hill, K.W., Bitter, M., von Goeler, S. (1996). Concepts and Requirements for ITER X-Ray Diagnostics. In: Stott, P.E., Gorini, G., Sindoni, E. (eds) Diagnostics for Experimental Thermonuclear Fusion Reactors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0369-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0369-5_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8020-7

  • Online ISBN: 978-1-4613-0369-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics