Skip to main content

Assessing the Evolutionary Nature of Multifragment Decay

  • Chapter
  • 68 Accesses

Abstract

Multifragment decays of central collisions in 84Kr + 197Au at E/A = 35, 55, and 70 MeV are studied. The dependence of the extracted emission time on the velocity of the fragment pair is investigated. More energetic pairs manifest a stronger Coulomb interaction indicating emission from a source of smaller spatial-temporal extent than less-energetic pairs. This trend can be understood in the context of a statistical model which allows the source characteristics to evolve as the fragments are emitted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Harris et al., Nucl. Phys. A471, 241c (1987).

    ADS  Google Scholar 

  2. J. Finn et al., Phys. Rev. Lett. 49, 1321 (1982).

    Article  ADS  Google Scholar 

  3. C. A. Ogilvie et al. Phys. Rev. Lett. 67, 1214 (1991).

    Article  ADS  Google Scholar 

  4. R. T. de Souza et al., Phys. Lett. B268, 6 (1991).

    ADS  Google Scholar 

  5. D. R. Bowman et al., Phys. Rev. Lett. 67, 1527 (1991).

    Article  ADS  Google Scholar 

  6. G. Bertsch and P. J. Siemens, Phys. Lett. B126, 9 (1983).

    ADS  Google Scholar 

  7. D. H. E. Gross et al., Phys. Rev. Lett. 56, 1544 (1986).

    Article  ADS  Google Scholar 

  8. J. Bondorf et al., Nucl. Phys. A444, 460 (1985).

    ADS  Google Scholar 

  9. W. A. Friedman Phys. Rev. C 42, 667 (1990).

    Article  ADS  Google Scholar 

  10. H. W. Barz Nucl. Phys. A448, 753 (1986).

    ADS  Google Scholar 

  11. J. Aichelin et al., Phys. Rev. C 37, 2451 (1988).

    Article  ADS  Google Scholar 

  12. G. Peilert et al., Phys. Rev. C 39, 1402 (1989).

    Article  ADS  Google Scholar 

  13. D. H. Boal and J. N. Glosli, Phys. Rev. C 37, 91 (1988).

    Article  ADS  Google Scholar 

  14. W. Bauer et al., Phys. Rev. Lett. 58, 863 (1987).

    Article  ADS  Google Scholar 

  15. L. G. Moretto and G. J. Wozniak, Ann. Rev. Nucl. Part. Sci. 43, 379 (1993).

    Article  ADS  Google Scholar 

  16. G. F. Peaslee et al., Phys. Rev. C 49, R2271 (1994).

    Article  ADS  Google Scholar 

  17. R. T. de Souza et al., Nucl. Instr. Meth. A295, 109 (1990).

    ADS  Google Scholar 

  18. C. Cavata, et al., Phys. Rev. C 42, 1760 (1990).

    Article  ADS  Google Scholar 

  19. R. Trockel et al., Phys. Rev. Lett. 59, 2844 (1987).

    Article  ADS  Google Scholar 

  20. Y. D. Kim et al., Phys. Rev. Lett. 67, 14 (1991).

    Article  ADS  Google Scholar 

  21. Y. D. Kim et al., Phys. Rev. C 45, 338 (1992).

    Article  ADS  Google Scholar 

  22. D. Fox et al., Phys. Rev. C 47, R421 (1993).

    Article  ADS  Google Scholar 

  23. E. Bauge et al., Phys. Rev. Lett. 70, 3705 (1993).

    Article  ADS  Google Scholar 

  24. T. C. Sangster et al., Phys. Rev. C 47, R2457 (1993).

    Article  ADS  Google Scholar 

  25. D. Fox et al., Phys. Rev. C 50, 2424 (1994).

    Article  ADS  Google Scholar 

  26. T. Glasmacher et al., Phys. Rev. C 50, 952 (1994).

    Article  ADS  Google Scholar 

  27. R. Bougault et al., Phys. Lett. B232, 291 (1989).

    ADS  Google Scholar 

  28. W. G. Gong et al., Phys. Rev. C 43, 1804 (1991).

    Article  ADS  Google Scholar 

  29. X. Z. Zhang et al., Nucl. Phys. A461, 641 (1987);

    ADS  Google Scholar 

  30. X. Z. Zhang et al., Nucl. Phys. A461, 668 (1987).

    ADS  Google Scholar 

  31. O. Schapiro et al., Nucl. Phys. A568, 333 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Cornell, E. et al. (1996). Assessing the Evolutionary Nature of Multifragment Decay. In: Bauer, W., Mignerey, A. (eds) Advances in Nuclear Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0367-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0367-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8019-1

  • Online ISBN: 978-1-4613-0367-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics