Detection of Botulinum Neurotoxins Using Optical Fiber-Based Biosensor

  • Bal Ram Singh
  • Melissa A. Silvia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 391)

Abstract

Botulinum neurotoxins, produced by the anaerobic bacterium Clostridium botulinum, are the most toxic poisons known to man. The neurotoxins are food poisons. Once ingested, the neurotoxin is absorbed through the intestinal mucosal layer into the blood stream. It acts at the neuromuscular junction to inhibit the release of acetylcholine (a neurotransmitter) from nerve endings (Simpson, 1989). The result is the dreaded botulism disease, which is manifested by flaccid muscle paralysis.

Keywords

Toxicity Quartz Albumin Silane Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon, S.S. (1993) Clinical trial of human botulism immune globulin. In: Botulinum and Tetanus Neurotoxins: Neurotransmission and Biomedical Aspects ( B. R. DasGupta, ed.), Plenum Press, New York. pp. 477 – 482.Google Scholar
  2. Ashton, A. C, Growther, J. S., Dolly, J. D., 1985, A sensitive and useful radioimmunoassay for neurtoxin and it’s hemagglutinin complex for Clostridium botulinum. Toxicon 23: 235 – 246.PubMedCrossRefGoogle Scholar
  3. Bhatia, S. K., Shriver-Lake, L. C, Prior, K. J., Geoger, J., Calvert, J. M., Bredehurst, R., Ligler, F. S., 1989, Use of thiol-terminal silanes and heterobifunctional crossliners for immobilization of antibodies on silica surfaces. Anal Biochem. 178: 408 – 413.PubMedCrossRefGoogle Scholar
  4. DasGupta, B. R., 1989, The structure of botulinum neurotoxin. In: Botulinum Neurotoxin and Tetanus Toxin ( Simpson, L. L., ed.), Academic Press, SanDiego. pp. 53 – 67.Google Scholar
  5. Dezfulian, M., Hatheway, C. L., Yolken R. H., 1984, Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type A and B toxins in stool samples of infants with botulism. J.Clin. Microbiol 20: 379 – 388.PubMedGoogle Scholar
  6. Doellgast, G. J., Triscott, M. X., Beard, G. A. Bottoms, J. D., Cheng, T., Roh, B. H., Roman, M. G., Hall, P. A., and Brown, J. E., 1993, Sensitive Enzyme-Linked Immunosorbent Assay for Detection of Clostridium botulinum Neurotoxins A,B, and E Using Signal Amplification via Enzyme-Linke Coagulation Assay. J. Clin. Microbiol 31: 2402 – 2409.PubMedGoogle Scholar
  7. Ember, L., 1991, Chemical weapons: plan proposed to destroy Iraqi arms. Chem. Eng. News. 69: 6.Google Scholar
  8. Fujii, N., Kouichi, K., Yokosawa, N., Yashiki, T., Tsuzuki, K., and Oguma, K., 1993, The complete nucleotide sequence of the gene encoding the nontoxin component of Clostridium botulinum type E progenitor toxin. J. Gen. Microbiol. 139: 79 – 86.Google Scholar
  9. Gibson, A.M., Modi, N.K., Roberts T.A, et al., 1988, Evaluation of a monoclonal antibody based immunoassay for detecting type B Clostridium botulinum produced in pure culture and an inoculated cured meat system. J. Appi Bacteriol 64: 285 – 291.Google Scholar
  10. Gibson, A. M., Modi, N. K., Roberts, T. A., Shone, C. C, Hambleton, P., and Meiling, J., 1987, Evaluation of a monoclonal antibody-based immunoasssay for detecting type A Clostridium botulinum toxin produced in pure culture and an innoculated model cured meat system. J. Appi Bacteriol. 63: 217 – 226.Google Scholar
  11. Michalik, M.,Grezbowski, J., Ligieza J., 1986, Enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of Clostridium botulinum toxin type A and B. J. Immun. Meth. 93: 225 – 230.CrossRefGoogle Scholar
  12. Notermans, S., Hagenaars, M., Kozaki, S., 1982, The enzyme-linked immunosorbent assay (ELISA) for the detection and determination of Clostridium botulinum A, B and E. Meth. Enzymol. 84: 223 – 238.CrossRefGoogle Scholar
  13. Ohishi, L, Sugii, S., and Sakuchi, G., 1977, Oral toxicities of Clostrdium botulinum toxins in response to molecular size. Infect. Immun. 16: 107 – 109.Google Scholar
  14. Ohishi, I., Sugii, S., and Sakuchi, G., 1980, Oral toxicities of Clostridium botulinum type C and D toxins of different molecular size. Infect. Immun. 28: 303 – 309.Google Scholar
  15. Ogert, R. A., Brown, E., Singh, B. R., Shriver-Lake L. C, and Ligler F. S., 1992, Detection of Clostridium Botulinum Toxin A Using a Fiber Optic-Based Biosensor. Anal. Biochem. 205: 1 – 7.Google Scholar
  16. Potter, M. D., Meng, J., and Kimsey, P., 1993, An ELISA for Detection of Botulinal Toxin Types A, B, and E in Inoculated Food Samples. J. Food Prot. 56: 856 – 861.Google Scholar
  17. Sakaguchi, G., 1983, Clostridium botulinum toxins. Pharmac. Ther. 19: 164 – 194.Google Scholar
  18. Shone, C, Witon-Smith, P., Appleton, N., Hambleton, P., Modi, N., Gatley, S., and Meiling, J., 1985, Monoclonal Antibody-Based Immunoassay for Type A Clostridium botulinum Toxin is Comparable to the Mouse Bioassay. Appi & Env. MicroBiol 50: 63 – 67.Google Scholar
  19. Simpson, L. L., 1989, Botulinum Neurotoxins and Tetanus Toxin. Academic Press, San Diego.Google Scholar
  20. Singh, B. R., Chai, Y. G., Robertson, D. T. and Song, P. S., 1989, A photoreversible phytochrome affinity column chromatography for putative phytochrome receptor studies. J. Biochem. Biophys. Meth. 18: 105 – 112.PubMedCrossRefGoogle Scholar
  21. Singh, B. R., Foley, J. and Lafontaine, C, 1995a, Physico-chemical characterization of the botulinum neurotoxin binding protein from type E botulinum producing Clostridium botulinum. J. Prot. Chem. 14: 7 – 18.Google Scholar
  22. Singh, B. R., Li, B. and Read, D., 1995b, Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin a food poison but not tetanus? Toxicon 33: 1541 – 1547.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Bal Ram Singh
    • 1
  • Melissa A. Silvia
    • 1
  1. 1.Department of ChemistryUniversity of Massachusetts DartmouthNorth DartmouthUSA

Personalised recommendations