K252a and Staurosporine Microbial Alkaloid Toxins as Prototype of Neurotropic Drugs

  • Philip Lazarovici
  • David Rasouly
  • Lilach Friedman
  • Rinat Tabekman
  • Haim Ovadia
  • Yuzuru Matsuda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 391)


Protein kinases are enzymes that transfer a phosphate group from ATP to an acceptor amino acid in a substrate protein (Edelman et al., 1987). Protein kinases which transfer the phosphate to alcohol groups as acceptor are called serine/threonine kinases and those to a phenolyc group as acceptor are called protein tyrosine kinases. While certain tyrosine kinases are domains of growth factor receptors (Hunter, 1991), serine/threonine kinases are classified by their second messenger activators: cAMP dependent (PKA), cGMP dependent (PKG), calcium-phospholipid dependent (PKC), calcium-calmodulin dependent (CaMK), etc (Nairn et al., 1985). Protein phosphorylation of different cellular substrates by protein kinases is an important messenger switch in signal transduction for many plasma membrane receptors leading to a defined biological response (Kikkawa and Nishizuka, 1986). Therefore, in order to elucidate and manipulate receptor signal transduction pathways, potent and selective inhibitors would be of great value.


Nerve Growth Factor Experimental Autoimmune Encephalomyelitis Experimental Autoimmune Encephalomyelitis Model Nitric Oxide Synthetase Amyloid Precursor Protein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albina, J.E., Abate, J.A., and Henry, W.L.Jr (1991). Nitric oxide production is required for murine resident peritoneal macrophages to supress mitogen stimulated T-cell proliferation. The American Association of lmmunologists, 147, 144 – 148.Google Scholar
  2. Ashall, F. and Goate, A.M. (1994). Role of the ß-amyloid precursor protein in Alzheimer’s disease. Trends in Biochem. Sci., 19, 42 – 45.CrossRefGoogle Scholar
  3. Berg, M.M., Sternberg, D.W., Parada, L.F. and Chao, M.V. (1992). K252a inhibits nerve growth factor induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J. Biol. Chem., 267, 13 – 16.PubMedGoogle Scholar
  4. Buxbaum, J.D., Oishi, M., Chen, H.I., Pinkas-Kramarski, R., Jaffe, E.A., Gandy, S.E. and Greengard, P. (1992). Cholinergic agonists and interleukin 1 regulate processing and secretion of Alzheimer ß/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. USA, 89, 10075 – 10078.PubMedCrossRefGoogle Scholar
  5. Caporaso, G.L., Gandy, S.E., Buxbaum, J.D., Ramabhadran, T.V. and Greengard, P. (1992). Protein phosphorylation regulates secretion of Alzheimer ß/A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 89, 3055 – 3059.PubMedCrossRefGoogle Scholar
  6. Carrieri, P.B. (1994). The role of cytokines in the pathogenesis of multiple sclerosis. Int. Multiple Sclerosis, 1, 53 – 59.Google Scholar
  7. Couchie, D., Mavilia, C, Georgieff, I.S., Lien, R.K.H., Shelanski, M.L. and Nunez, J. (1992). Primary structure of high molecular weight tau present in the peripheral nervous system. Proc. Natl. Acad. Sci. USA, 89, 4378 – 4381.PubMedCrossRefGoogle Scholar
  8. Denis, M. (1991). Interferon-gamma treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cellular Immunology, 132, 150 – 157.PubMedCrossRefGoogle Scholar
  9. Dyrks, T., Weidemann, A., Multhaup, G., Salbaum, J.M., Lemaire, H.G., Kang, J., Muller-Hill, B., Masters, C.L. and Beyreuther, K. (1988). Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer–s disease. EMBO J 7, 94–-957.Google Scholar
  10. Edelman, A.M., Blumenthal, D.K. and Krebs, E.G. (1987). Protein serine/threonine kinases. Ann. Rev. Biochem., 56, 567 — 613.PubMedCrossRefGoogle Scholar
  11. Hunter, T. (1991). Protein kinases classification. Methods Enzymol, 200, 3 – 38.PubMedCrossRefGoogle Scholar
  12. Jansson, L., Olsson, T., Hojeberg, B. and Holmdahl, R. (1991). Chronic experimental autoimmune encephalomyelitis induced by the 89-101 myelin basic protein peptide in B10RIII (H-2r) mice. Eur. J, Immunol., 21, 693 — 699.CrossRefGoogle Scholar
  13. Kaplan, D.R., Hempstead, B.L., Martin-Zanca, D., Chao, M.V. and Parada, L.F. (1991). The trk proto-oncogene product: a signal transduction receptor for nerve growth factor. Science, 252, 554 – 557.PubMedCrossRefGoogle Scholar
  14. Kikkawa, U. and Nishizuka, Y. (1986). The role of protein kinase C in transmembrane signaling. Ann. Rev. Cell. Biol, 2, 149 – 178.PubMedCrossRefGoogle Scholar
  15. Koizumi, S., Contreras, M,L., Matsuda, Y, Hama, T., Lazarovici, P. and Guroff, G. (1988). K252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J. Neurosci., 8, 715 – 721.PubMedGoogle Scholar
  16. Lazarovici, P., Levi, B.Z., Lelkes, P.I., Kuizumi, S., Fujita, K., Matsuda, Y, Ozato, K. and Guroff, G. (1989). K252a inhibits the increase in c-fostranscription and the increase in intracellular calcium produced by nerve growth factor in PC 12 cells. J. Neurosci. Res., 23, 1 – 8.PubMedCrossRefGoogle Scholar
  17. Levi-Montalcini, R. (1987). The nerve growth factor: thirty-five years later. Science, 237, 1154 – 1164.PubMedCrossRefGoogle Scholar
  18. Matsuda, Y. (1993). Screening of bioactive substances of microbial origin based on enzyme and receptor binding assays. Actinomycetology, 7, 110 — 118.CrossRefGoogle Scholar
  19. McFarlin, D.E., Blank, S.E. and Kibler, R.F. (1974). Recurrent experimental allergic encephalomyelitis in the Lewis rats. J. Immunol, 113, 712 – 715.PubMedGoogle Scholar
  20. Moncada, S., Palmer, R.M.J, and Higgs, E.A. (1991). Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 43, 109 – 136.PubMedGoogle Scholar
  21. Nabeshima, T., Ogawa, S.I., Nishimura, H., Fuji, K., Kameyama, T. and Sasaki, Y (1991). Staurosporine facilitates recovery from the basal forebrain-lesion-induced impairment of learning and deficit of cholinergic neurons in rats. J. Pharmacol. Exp. Therap., 257, 562 – 566.Google Scholar
  22. Nairn, A.C., Hemmings, H.S. and Greengard, P. (1985). Protein kinases in the brain. Ann. Rev. Biochem., 54, 931 – 976.PubMedCrossRefGoogle Scholar
  23. Parker, P.J., Cook, P.P., Olivier, A.R., Pears, C, Ways, D.K. and Webster, C. (1992). Second messenger systems as pharmacological targets. Biochem. Soc. Trans., 20, 415 – 418.PubMedGoogle Scholar
  24. Quarles, R.H., Morell, P. and McFarlin, D.E. (1989). Diseases involving myelin. In: Basic Neurochemistry( Siegel, G., Agranoff, G., Albeis, R.W. and Molinoff, P. eds.), 697 – 713, Raven press, New York.Google Scholar
  25. Rasouly, D., Rahamim, E., Lester, D., Matsuda, Y. and Lazarovici, P. (1992). Staurosporine-induced neurite outgrowth in PC12 cells is independent of protein kinase C inhibition. Mol. Pharmacol, 42, 35 – 43.PubMedGoogle Scholar
  26. Rasouly, D., Rahamim, E., Ringel, I., Ginzburg, I., Muarakata, C, Matsuda, Y and Lazarovici, P. (1994). Neurites induced by staurosporine in PC12 cells are resistant to colchicine and express high levels of tau proteins. Mol. Pharmacol, 45, 29 – 35.PubMedGoogle Scholar
  27. Rasouly, D. and Lazarovici, P. (1994). Staurosporine, a kinase inhibitor with neurotropic effects, induces the tyrosine phosphorylation of a 145 kD protein, but does not activate trk in PC12 cells. Europ. J. Pharmacol. — Mol. Sec, 269, 255 – 264.CrossRefGoogle Scholar
  28. Rasouly, D., Matsuda, Y. and Lazarovici, P. (1995). Biochemical and pharmacological properties of K252b microbial alkaloids. In: The Toxic Action of Marine and Terrestrial Alkaloids( Blum, M.S. ed), pp. 161 – 190, Alaken Inc., Fort Collins, CO., USA.Google Scholar
  29. Rasouly, D., Matsuda, Y. and Lazarovici, P. (1995). Biochemical and pharmacological properties of K252b microbial alkaloids. In: The Toxic Action of Marine and Terrestrial Alkaloids( Blum, M.S. ed), pp. 161 – 190, Alaken Inc., Fort Collins, CO., USA.Google Scholar
  30. Sadot, E., Barg, J., Rasouly, D., Lazarovici, P. and Ginzburg, I. (1995). Short-term and long-term mechanisms of tau regulation in PC12 cells. J. Cell Sci. 108, 2857 – 2864.PubMedGoogle Scholar
  31. Slack, B.E., Nitsch, R.M., Livneh, E., Kunz, G.M., Breu, J., Eldar, H. and Wurtman, R.J. (1993). Regulation by phorbol esters of amyloid precursor protein release from swiss 3T3 fibroblasts overexpressing protein kinase Ca. J. Biol. Chem, 268, 21097 – 21101.PubMedGoogle Scholar
  32. Tamaoki, T. (1991). Use and specificity of staurosporine, UCN-01 and calphostin C as protein kinase inhibitors. Methods Enzymol, 201, 340 – 347PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Philip Lazarovici
    • 1
  • David Rasouly
    • 1
  • Lilach Friedman
    • 1
  • Rinat Tabekman
    • 1
  • Haim Ovadia
    • 2
  • Yuzuru Matsuda
    • 3
  1. 1.Department of Pharmacology and Experimental Therapeutics School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of NeurologyHadassah Medical CenterJerusalemIsrael
  3. 3.Tokyo Research LabsKyowa Hakko Kogyo Co. Ltd.Machida-Shi, TokyoJapan

Personalised recommendations