Pyrularia Thionin

Physical Properties, Binding to Phospholid Bilayers and Cellular Responses
  • Leo P. Vernon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 391)


There is an increasing interest in the interaction of small basic peptides with cellular and synthetic membranes, both in terms of the initial binding process and subsequent alterations seen in the phospholipid bilayer order and organization. In terms of its general structure and mode of action with cellular membranes, pyrularia thionin (PT) can be directly compared to both melittin and cardiotoxin (CTX), two other toxic peptides which have been extensively studied. It is generally accepted that all three peptides show electrostatic binding to membranes through strongly charged regions of the peptide, followed by insertion of a hydrophobic portion of the molecule into the membrane bilayer, causing alterations of phospholipid order and structure. The properties of melittin (1,2) and CTX (3,4) have been reviewed.


Powdery Mildew Phosphatidic Acid P388 Cell Snake Venom Phospholipid Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





phosphatic acid






Phospholipase A2


pyrularia thionin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dempsey, C. E., 1990, The actions of melittin on membranes, Biochim. Biophys Acta, 1031:143 – 161.PubMedGoogle Scholar
  2. Fletcher, J. E., 1993, Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin, Toxicon, 31:669–695.PubMedCrossRefGoogle Scholar
  3. Harvey, A. L., 1985, Cardiotoxins from cobra venoms, J. Toxicol. Toxin Rev, 4:41 — 69.Google Scholar
  4. Harvey, A. L., 1991, Cardiotoxins from cobra venoms, In Handbook of Natural Toxins, vol. 5, Reptile and Amphibian Venoms, pp. 85–106. Tu, A. T. (ed) Marcel-Dekker, New York.Google Scholar
  5. Vernon, L. P., Evett, G. E., Zeikus, R. D., and Gray, W. R., 1985, A toxin thionin from Pyrularia pubera:Purification, properties, and amino acid sequence, Arch. Biochem. Biophys238:18.Google Scholar
  6. Osorio E. Castro, V. R. and Vernon, L. P., 1989, Hemolytic activity of thionin from Pyrulariapubera nuts and snake venom toxins of Naja Naja species:pyrularia thionin and snake venom cardiotoxin compete for the same membrane site, Toxicon, 27:511.CrossRefGoogle Scholar
  7. Vernon, L. P. and Rogers, A., 1992, Effect of calcium and phosphate ions on hemolysis induced by pyrularia thionin and Naja Naja Kaouthiacardiotoxins, Toxicon, 30:701.PubMedCrossRefGoogle Scholar
  8. Vernon, L. P. and Rogers, A., 1992, Binding properties of pyrulariathionin and Naja Naja Kaouthiacardiotoxins to human and animal erythrocytes and P388 cells, Toxicon, 30:711.PubMedCrossRefGoogle Scholar
  9. Garcia-Olmedo, F., Rodriguez-Palenzuela, P., Hernandez-Lucas, C., Ponz, F., and Marana, C., 1989, The Thionins:A protein family that includes purothionins, viscotoxins and crambins, Oxford Surv. Plant Mol. Cell6:31.Google Scholar
  10. Bohlmann, H. and Apel K., 1991, Thionins, Ann. Rev. Plant. Physiol42:227.CrossRefGoogle Scholar
  11. Van Etten, C. H., Nielsen, H. C. and Peters, J. E., 1965, A crystalline polypeptide from the seed of crambe abyssinica, Photochemistry, 4:467.CrossRefGoogle Scholar
  12. Teeter, M. M., Mazer, J. A. and L–ltalien, J. J., 1981, Primary structure of the hydrophobic plant protein crambin, Biochemistry, 20:5437.PubMedCrossRefGoogle Scholar
  13. Hendrickson, W. A. and Teeter, M. M., 1981, Structure of the hydrophobic protein crambin determined directly from the anamalous scattering of sulphur, Nature, 290:107.CrossRefGoogle Scholar
  14. Clore, G. M., Nilges, M., Sukumaran, D. K., Brunger, A. T., Karplus, M. and Gronenborn, A. M., 1986, The three-dimensional structure of a1-purothionin in solution:combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics, EMBOJ, 5:2729.Google Scholar
  15. Clore, G. M., Sukamaran, D. K., Gronenborn, A. M., Teeter, M. M., Whitlow, M. and Jones, B. L., 1987, Nuclear magnetic resonance study of the solution structure of a 1-purothionin. Sequential resonance assignment, secondary structure and low resolution tertiary structure, J. Mol. Biol, 193:571.PubMedCrossRefGoogle Scholar
  16. Fernandez de Caleya, R., Gonzalez-Pascual, B., Garcia-Olmedo, F. and Carbonero, P., 1972, Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro, Appl. Microbiol, 23:998.PubMedGoogle Scholar
  17. Johnson, T. C., Wada, K., Buchanan, B. B. and Holmgren, A., 1987, Reduction of purothionin by the wheat seed thioredoxin system, Plant Physiol, 85:446.PubMedCrossRefGoogle Scholar
  18. Carrasco, L., Vazquez, D., Hernandez-Lucas, C., Carbonero, P. and Garcia-Olmedo, F., 1981, Plant peptides that modify membrane permeability in cultured mammalian cells, Eur. J. Biochem, 116:185.PubMedCrossRefGoogle Scholar
  19. Bohlmann, H., Clausen, S., Behnke, S., Giese, H. and Hiller, C, 1988, Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants, EMBOJ, 7:1559.Google Scholar
  20. Ebrahim-Nesbat, F., Behnke, S., Kleinhofs, A. and Apel, K., 1988, Cultivar-related differences in the distribution of cell-wall-bound thionins in compatible and incompatible interactions between barley and powdery mildew, Planta, 179:203.CrossRefGoogle Scholar
  21. Brunger, A. T., Campbell, R. L., Clore, G. M., Gronenborn, A. M., and Karplus, M., 1987, Solution of a protein crystal structure with a model obtained from NMR interproton distance restraints, Science, 235:1049.PubMedCrossRefGoogle Scholar
  22. Clore, G. M., Brunger, A.T., Karplus, M., and Gronenborn, A. M., 1986, Applications of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination. A model study of crambin, J. Mol. Biol, 191:523.PubMedCrossRefGoogle Scholar
  23. Williams, R. W. and Teeter, M. M., 1984, Raman spectroscopy of homologous plant toxins:Crambin and a 1- and p-Purothionin secondary structures, disulfide conformation, and tyrosine environment, Biochemistry23:6796.Google Scholar
  24. Lecomte, J. T. J., Jones, B. L. and Llinas, M., 1982, Proton magnetic resonance studies of barley and wheat thionins:structural homology with crambin, Biochemistry, 21:4843.PubMedCrossRefGoogle Scholar
  25. Whitlow, M. and Teeter, M. M., 1985, Energy minimization for tertiary structure predictions of homologous proteins:a,-purothionin and viscotoxin A3 models from crambin, J. Biochem, Struct. Dynam., 2:831.Google Scholar
  26. Lecomte, J. T. J., Kaplan, D., Llinas, M., Thunberg, E. and Samuelsson, G., 1987, Proton magnetic resonance characterization of phoratoxins and homologous proteins related to crambin, Biochemistry, 26:1732.CrossRefGoogle Scholar
  27. Clore, G. M., Sukumaran, D. K., Nilges, M. and Gronenborn, A. M., 1987, Three-dimensional structure of phoratoxin in solution:combined use of nuclear magnetic resonance, distance geometry, and restrained molecular dynamics, Biochemistry, 26:1732.CrossRefGoogle Scholar
  28. Teeter, M. M., Ma, X. -Q., Rao, U. and Whitlow, M., 1990, Crystal sturcture of a protein toxin a!-purothionin at 2.5A and a comparison with predicted models, Proteins, 8:118.PubMedCrossRefGoogle Scholar
  29. Evett, G. E., Donaldson, D. M. and Vernon, L. P., 1986, Biological properties of pyrularia thionin prepared from nuts of Pyrularia pubera, Toxicon, 24:622.CrossRefGoogle Scholar
  30. Konopa, J., Woynarowski, J. M., and Lewandowska-Gunieniak, M., 1980, Isolation of viscotoxins:cytotoxic basic polypeptides from viscum albumL., Hoppe Seyler’s Z. Physiol. Chem, 131:1525.CrossRefGoogle Scholar
  31. Nakanishi, T., Yoshizumi, H., Tahara, S., Hakura, A., and Toyoshima, K., 1979, Cytotoxicity of purothionin A on various animal cells, Jpn. J. Cancer Res, 70:323.Google Scholar
  32. Samuelsson, G., 1974, Mistletoe Toxins, Syst. Zool, 22:566.CrossRefGoogle Scholar
  33. Osorio E., Castro, V. R„ Van Kuiken, B. A., and Vernon, L. P., 1989, Action of a thionin isolated from nuts of pyrularia puberaon human erythrocytes, Toxicon, 27:501.CrossRefGoogle Scholar
  34. Evans, J., Wang, Y., Shaw, K. -P and Vernon, L. P., 1989, Cellular responses to pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination, Proc. Natl. Acad. Set, USA, 86:5849.CrossRefGoogle Scholar
  35. Evans, J. G. and Vernon, L. P, 1993, Cellular membrane responses and phospholipase A2 activation induced by pyrulariathionin, J. of Natural Toxins, 2:143.Google Scholar
  36. Judd, A. M., Vernon, L. P and MacLeod, R. M., 1992, Pyrulariathionin increases arachidonate liberation and prolactin and growth hormone release from anterior pituitary cells, Toxicon, 30:1563.Google Scholar
  37. Shier, W. T., Activation of self-destruction as a mechanism of action for cytolytic toxins, In:Natural Toxins, D. Eaker and T. Wadstrom, eds. Permagon Press, Oxford and New York, pp. 193 — 200.Google Scholar
  38. Shier, W. T., 1983, Toxins as research tools:potentials and pitfalls, J. Toxicol. -Toxin Reviews, 2:111.Google Scholar
  39. Fletcher, J. E., Jiang, M. -S. and Gong, Q. -H., 1991, Snake venom cardiotoxins, and bee venom mellitin activate phsopholipase C activity in primary cultures of skeletal muscle, Biochem. Cell Biol, 69:274.PubMedCrossRefGoogle Scholar
  40. Angerhofer, C. K., Shier, W. T., and Vernon, L. P., 1990, Phospholipase activation in cytotoxic mechanism of thionin *irifled from nuts of Pyrularia pubera, Toxicon, 28:547.CrossRefGoogle Scholar
  41. Huang, W., Vernon, L. P and Bell, J. D., 1994, Enhancement of adenylate cyclase activity in S49 lymphoma cell membranes by the toxin thionin from Pyrularia pubera, Toxicon, 32:789 — 797.CrossRefGoogle Scholar
  42. Balls, A. K., Hale, W. S. and Harris, T. H., 1942, A crystalline protein obtained from lipoprotein of wheat flour, Cereal Chem, 19:279.Google Scholar
  43. Florine-Casteel, K. F., Lemasters, J. J. and Herman B., 1991, Lipid order in hepatocyte plasma membrane blebs during ATP depletion measured by digitized video fluorescence polarization microscopy, FASEB J, 5:2078.PubMedGoogle Scholar
  44. Kashimoto T., Sakakibara, R., Huynh, Q. K., Wada, H. and Yoshizumi, H., 1979, The effect of purothionin on bovine adrenal medullary cells, Res. Commun. Chem. Pathol. Pharmacol, 26:221.PubMedGoogle Scholar
  45. Chen, X. -H and Harvey, A. L, 1993, Effects of different antagonists on depolarization of cultured chick myotubes by cobra venom cardiotoxins and pyrulariathionin from the plant Pyrularia pubera, Toxicon, 31:1229 — 1236.CrossRefGoogle Scholar
  46. Osorio E., Castro, V. R., Ashwood, E. R., Wood, S. G. and Vernon, L. P., 1990, Hemolysis of erythrocytes and fluorescence polarization changes elicited by peptide toxins, aliphatic alcohols, related glycols and benzylidene derivatives, Biochim. Biophys. Acta, 1029:252.CrossRefGoogle Scholar
  47. Wang, F., Naisbitt, G. H., Vernon, L. P and Glaser, M., 1993, Pyrularia thionin binding to and the role of tryptophan-8 in the enhancement of phosphatidylserine domains in erythrocyte membranes, Biochemistry, 32:12283 — 12289.PubMedCrossRefGoogle Scholar
  48. Gasanov, S. E., Vernon, L. P. and Aripov, T. F., 1992, Modification of phospholipid membrane structure by the plant toxic peptide pyrularia thionin, Arch. Biochem. Biophys, 30:367.Google Scholar
  49. Gasanov, S. E., Rael, E. D., Martiniz, M., Baeza, G. and Vernon, L. P, 1994, Modulation of phospholipase A2 activity by membrane-active peptides on liposomes of different phospholipid composition, Gen. Physiol Biophys13:275 — 286.PubMedGoogle Scholar
  50. Bell, J. Personal Communication.Google Scholar
  51. Dufourcq, J. and Faucon, J. -F., 1978, Specific binding of a cardiotoxin from Naja mossambica mossambicato charged phospholipids detected by intrinsic fluorescence, Biochemistry\ 17:1170.Google Scholar
  52. Vincent, J. -P., Balerna, M. and Lazdunski, M., 1978, Properties of association of cardiotoxin with lipid vesicles and natural membranes, FEBSLett, 85:103.CrossRefGoogle Scholar
  53. Faucon, J. F., Bernard, E., Dufourcq, J., Pexolet, M. and Bougis, P., 1981, Perturbation of charged phospholipid bilayers induced by melittin and cardiotoxins. A fluorescence, differential scanning cal- orimetry and raman spectroscopy study, Biochmie, 63:857.CrossRefGoogle Scholar
  54. Faucon, J. F., Dufourcq, J., Bernard, E., Duchesneau, L. and Pexolet, M., 1983, Abolition of the thermotropic transition of charged phospholipids induced by a cardiotoxin from Naja mossambica mossambicaas detected by fluorescence polarization, differential scanning calorimetry, and raman spectroscopy, Biochemistry, 22:2179.PubMedCrossRefGoogle Scholar
  55. Bougis, P, Tessier, M., Van Rietschoten, J., Rochat, H., Faucon, J.F. and Dufourcq, J., 1983, Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins?, Mol. Cell Biochem, 55:49.PubMedCrossRefGoogle Scholar
  56. Dufourcq, J., Faucon, J.F., Bernard, E. and Pezolet, M., 1982, Structure-function relationships for cardiotoxins interacting with phospholipids, Toxicon, 20:165.PubMedCrossRefGoogle Scholar
  57. Gatineau, E., Toma, F., Montenay-Garestier, T., Takechi, M., Fromageot, P. and Menez, A., 1987, Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigrocollisvenom, Biochemistry, 26:8046.PubMedCrossRefGoogle Scholar
  58. Aripov, T. F., Salakhutdinov, B. A., Salkihova, Z. T., Sadykov., A. S. and Tashmukhamedov, B. A., 1984, Structural changes of liposome phospholipid packing induced by cytotoxin of the central asia cobra venom, Gen. Physl. Biophys, 3:489.Google Scholar
  59. Aripov, T. F., Gasanov, S. E., Salakhuldinov, B. A., Rozenshtein, I. A. and Kamaev, F. G., 1989, Central Asian cobra venom cytotoxins-induced aggregation, permeability and fusion of liposomes, Gen. Physl. Biophys, 8:459.Google Scholar
  60. Oimatov, M., Lyoy, Yu. M., Aripov, T. F. and Feigin, L. A., 1986, X-ray small-angle scattering structural studies of model membrane complexes with cytotoxin, Stud. Biophys112:237.Google Scholar
  61. Fracki, W. S., Li, D., Owen, N., Perry, C., Naisbitt, G. H. and Vernon, L. P., 1992, Role of Tyr and Trp in membrane responses of pyrularia thionin determined by optical and NMR spectra following Tyr iodina- tion and Trp modification, Toxicon, 30:1427.PubMedCrossRefGoogle Scholar
  62. Wada, K., Ozaki, Y., Matsubara, H. and Yoshizumi, H., 1982, Studies on purothionin by chemical modifications, J. Biochem, 91:257.PubMedGoogle Scholar
  63. Bell, J. D. and Biltonen, R. L., 1989, The temporal sequence of events in the activation of phospholipase A2 by lipid vesicles, J. Biol Chem, 264:12194.PubMedGoogle Scholar
  64. Vernon, L. P and Bell, J. D., 1992, Membrane structure, toxins and phospholipase A2 activity, Pharm. Therap, 54:269.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Leo P. Vernon
    • 1
  1. 1.Chemistry DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations