Skip to main content

New Insights into the Molecular Structure of the Agonists Binding Site of Protein Kinase C by Pseudoreceptor Modeling

  • Chapter

Abstract

Protein kinase C (PKC) comprises a family of isoenzymes with serine/threonine kinase activity similar in molecular size, structure and mechanism of activation. This enzyme family is an important part of one of the major signal transduction pathways regulating many intracellular processes such as modulation of gene expression, cell proliferation and differentiation. PKC was identified as the major cellular receptor for skin tumor promoting phorbol esters and certain other compounds exhibiting skin tumor promoting bioactivity. Moreover, PKC is a target for molecules with antineoplastic activity like bryostatin. Thus by various investigators it is considered as a potential target for discovery and development of new anticancer drugs. On the other hand for PKC so far no potent and isoenzyme selective activators or inhibitors are known, and a 3-D structure of the enzyme is not available. Therefore a new technique of molecular modeling was investigated to design the agonist binding site of PKC: ‘Pseudoreceptor modeling’. It is a comprehensive strategy in the design of potent, selective and novel ligands for unknown receptors (Vedani et al., 1993). The new approach is focused on the binding site of the receptor and allows the construction of hypothetical 3-D-models of binding pockets using the directionality of receptor-ligand interactions (hydrogen bonds, metal-ligand interaction, hydrophobic interactions). In the investigation described an ensemble of six ligands, binding all specifically to the regulatory domain of the enzyme and representing together a pharmacophore model for activation of PKC, was successfully used. The pseudoreceptor model of PKC will be presented. It may be used as a surrogate of the agonist binding site of PKC to guide the synthesis of new and selective PKC-agonists allowing further investigation of PKC-isoforms in the signal transduction pathway. In addition it may be of assistance in the development for new antineoplastic drugs.

Represents person presenting Paper

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, A. (1993) Pharmac. Ther.,59: 257–280

    Article  CAS  Google Scholar 

  2. Tritton, T.R. and Hickman, J.A. (1990) Cancer Cell, 2: 95–105

    CAS  Google Scholar 

  3. Powis, G. (1991) Trends Pharmacol. Sci.,12: 188–193

    Article  PubMed  CAS  Google Scholar 

  4. Azzi, A., Boscoboinik, D. and Hensey, C. (1992) Eur. J. Biochem.,208: 547–557

    Article  PubMed  CAS  Google Scholar 

  5. Hug, H. and Sarre, T.F. (1993) Biochem J.,291: 329–343

    PubMed  CAS  Google Scholar 

  6. Hecker, E. (1985) Arzneim.-Forsch./Drug Res.,35: 1890–1903

    CAS  Google Scholar 

  7. Takai, Y., Kishimoto, A., Inoue, M. and Nishizuka, Y. (1977) I, J. biol. Chem., 252: 7603–7609. II, J. Biol. Chem., 252: 7610–7616.

    Google Scholar 

  8. Nishizuka, Y. (1995) FASEB J.(in press).

    Google Scholar 

  9. Hecker, E. (1978) In: Carcinogenesis (Vol. 2), Mechanisms of tumor promotion and cocarcinogenesis, (Slaga T.J., Sivak A. and Boutwell R.K. Hrsg.), pp.11, Raven Press, New York.

    Google Scholar 

  10. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. and Nishizuka, Y. (1982) J. Biol. Chem.,257: 7847–7851.

    PubMed  CAS  Google Scholar 

  11. Berridge, M.J. (1987)A. Rev. Biochem.,56: 159–193.

    Article  CAS  Google Scholar 

  12. Stabel, S. and Parker, P.J. (1991) Pharmac. Ther., 51: 71–95

    Article  CAS  Google Scholar 

  13. Burns, D.J., Basta, P.V., Holmes, W.D., Ballas, L.M., Rankl, N.B., Barbee, J.L., Bell, R.M. and Loomis, C.R. (1992) In: Adenine Nucleotides in Cellular Energy Transfer and Signal Transduction, (Papa, S., Azzi, A. and Tager, J.M. ed.) pp. 207–217, Birkhäuser Verlag, Basel/Switzerland.

    Google Scholar 

  14. Blumberg, P.M. (1988) Cancer Res., 48: 1–8.

    PubMed  CAS  Google Scholar 

  15. Rando, R.R. and Kishi, Y. (1992) Biochemistry, 31: 2211–2218

    Article  PubMed  CAS  Google Scholar 

  16. Burns, D.J. and Bell, R.M. (1991) J Biol. Chem.,266: 18330–18338

    PubMed  CAS  Google Scholar 

  17. Ahmed, S., Kozma, R. Lee, J., Monfries, C., Harden, N. and Lim, L. (1991) Biochemical J.,55: 233–241

    Google Scholar 

  18. Vedani, A., Zbinden, P. and Synder, P. (1993) J. Receptor Res,13: 163–177

    CAS  Google Scholar 

  19. Taylor, R. and Kennord, O. (1984) J. Acc. Chem. Res. 17: 320–326

    Article  CAS  Google Scholar 

  20. Murry-Rust, P. and Glusker, J.P. (1984) J. Am. Chem. Soc. 106: 1018–1025

    Article  Google Scholar 

  21. Vedani, A. and Dunitz, J.D. (1985) J. Am. Chem. Soc. 107: 7653–7958

    Article  CAS  Google Scholar 

  22. Baker, E.N. and Hubbard, R.E. (1984) Prog. Biophys. Mol. Biol. 44: 97–179

    Article  PubMed  CAS  Google Scholar 

  23. Tintelnot, M. and Andrew, P. (1992) J. Comput. Aided Mol. Design. 3: 67–84

    Article  Google Scholar 

  24. v.d. Lieth, C.W., Krauter, G. and Hecker, E. (1995) In: Novel Appraoches in Anticancer Drug Design, Molecular Modelling-New Treatment Strategies. Contrib. Oncol., (Zeller W.J., D’Incali, M. and Newell, D.R. ed.) 49: 25–39,.Basel, Karger.

    Google Scholar 

  25. Krauter, G. (1993) Über Struktur und Wirkung von Agonisten der Protein Kinase C: Untersuchungen mittels klassischer quantitativer Strukturwirkungsbeziehungen (QSAR) und rechnerunterstützter molekularer Modellierungen; doctoral thesis, Naturwissenschaftlich-Mathematische Gesamtfakultät, University of Heidelberg

    Google Scholar 

  26. Rippmann, F. (1990) Quant. Struct. -Act. Relat. 9: 1–5.

    Article  CAS  Google Scholar 

  27. Hubbard, S.R., Bishop, W.R., Kirschmeier, P., Goerge, S.J., Cramer, S.P. and Hendrickson, W.A. (1991) Science, 254: 1776–1779

    Article  PubMed  CAS  Google Scholar 

  28. Böhm, H.J. (1992) J. Comput. Aided Mol. Design, 6: 61–78

    Article  Google Scholar 

  29. Böhm, H.J. (1992) J. Comput. Aided Mol. Design, 6: 593–606

    Article  Google Scholar 

  30. Rotstein, S.H. and Murcko, M.A. (1993) J. Comput. Aided Mol. Design, 7: 23–43.

    Article  CAS  Google Scholar 

  31. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E. (1994) Structure, Function, and Genetics, 19: 199–221

    Article  CAS  Google Scholar 

  32. Lawrence, M.C. and Davis, P.C. (1992) Proteins: Structure,Function, and Genetics, 12: 31–41.

    Article  CAS  Google Scholar 

  33. Teng, K., Marquez, V.E., Milne, G.W.A., Barchi, J.J., Kazanietz, M.G., Lewin, N.E., Blumberg, P.M. and Abushanab, E. (1992) J. Am. Chem. Soc., 114: 1059–1070

    Article  CAS  Google Scholar 

  34. Ono, Y., Fujii, T., Ogita, K., Kikkawa, U., Igarishi, K. and Nishizuka, Y. (1987) FEBS Lett. 226: 125–128

    Article  PubMed  CAS  Google Scholar 

  35. Osada, S., Mizuno, K., Saido, T. C., Akita, Y., Suzuki, K., Kuroki, T. and Ohno, S. (1990) J. Biol. Chem., 265: 22434–22440

    PubMed  CAS  Google Scholar 

  36. Ohno, S., Kawasaki, H., Imajoh, S., Suzuki, K., Inagaki, M., Yokokura, H., Sakoh, T. and Hidaka, H. (1987) Nature, 325: 161–166

    Article  PubMed  CAS  Google Scholar 

  37. Bacher, N., Zisman, Y., Berent, E. and Livneh, E. (1991) Molecular and Cellular Biology, 11: 126–133

    PubMed  CAS  Google Scholar 

  38. Coussen, L., Parker, P.J., Rhee, L., Yang-Feng, T.L., Chen, E., Waterfield, M.D., Franke, U. and Ullrich, A. (1986) Science, 233: 859–865

    Article  Google Scholar 

  39. Tabuse, Y., Nishiwaki, K. and Miwa, J. (1989) Science, 243: 1713–1716

    Article  PubMed  CAS  Google Scholar 

  40. Chen, K., Peng, Z., Lavu, S. and Kung, H. (1989) Sec. Mess. Phosphoprot., 12: 251–260

    CAS  Google Scholar 

  41. Schaeffer, E., Smith, D., Mardon, G., Quinn, W. and Zuker, C. (1989) Cell, 57: 403–412

    Article  PubMed  CAS  Google Scholar 

  42. Maruyama, N.I. and Brenner, S. (1991) Proc. Natl. Acad. Sci. USA; 55: 5729–5733

    Article  Google Scholar 

  43. Hall, C., Monfries, C., Smith, P., Lim, H.H., Kozma, R., Ahmed, S., Vanniasingham, V., Leung, T. and Lim, L. (1990) J. Mol. Biol., 211: 11–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Krauter, G., von der Lieth, C.W., Hecker, E. (1996). New Insights into the Molecular Structure of the Agonists Binding Site of Protein Kinase C by Pseudoreceptor Modeling. In: Zaidi, Z.H., Smith, D.L. (eds) Protein Structure — Function Relationship. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0359-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0359-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8015-3

  • Online ISBN: 978-1-4613-0359-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics