Skip to main content

Elastic Spectrometry

Fundamental and Practical Aspects

  • Chapter
  • 108 Accesses

Abstract

The scattering of energetic ions by elemental target atoms has proved to be a useful tool in studying materials (e.g., thin films, surfaces, bulk solids). The parameters accessible to measurement by an elastic interaction can be divided into two groups: physicals parameters attached to the ion trajectory and the collision process, for example, cross sections, stopping powers, ranges and path lengths, resonances, etc.; the inventory of the target sample, for instance, target thickness, roughness of target surface, elemental constituents, depth profiles, elemental impurities, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsden, E., The passage of particles through hydrogen, Philos. Mag. 27, 824 (1914).

    CAS  Google Scholar 

  2. Wenzel, W. A., and Whaling, W., The stopping cross section of D20 ice, Phys. Rev. 87, 499 (1952).

    Article  CAS  Google Scholar 

  3. Powers, D., and Whaling, W., Range of heavy ions in solids, Phys. Rev. 126, 61 (1962).

    Article  CAS  Google Scholar 

  4. Siritonin, E. I., Tulinov, A. F., Fiderkevich, A., and Shyskin, K. S., The determination of energy losses from the spectrum of particles scattered by a thick target, Radiat. Effects 15, 149 (1972).

    Article  Google Scholar 

  5. Tsurushima, T., and Tanoue, H. J., Spatial distribution of energy deposited by energetic heavy ions in semiconductors, J. Phys. Soc. Jpn. 31, 1695 (1971).

    Article  CAS  Google Scholar 

  6. Nicolet, M. A., Mayer, J. W., and Mitchell, I. V., Microanalysis of materials by backscattering spectrometry, Science 177, 841 (1972).

    Article  CAS  Google Scholar 

  7. Brice, D. K., Theoretical analysis of the energy spectra of backscattering ions, Thin Solid Films 19, 121 (1973).

    Article  CAS  Google Scholar 

  8. Jack, H. E., Jr., Some general features of random elastic scattering spectra, Thin Solid Films 19, 267 (1973).

    Article  CAS  Google Scholar 

  9. William, J. S., and Möller, W., On the determination of optimum depth resolution conditions for Rutherford backscattering analysis, Nucl. Instrum. Methods Phys. Res. 157, 213 (1978).

    Article  Google Scholar 

  10. Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry ( Academic, New York, 1978 ).

    Google Scholar 

  11. Lewis, M. B., A deconvolution technique for depth profiling with nuclear microanalysis, Nucl. Instrum. Methods Phys. Res. 190, 605 (1981).

    Article  CAS  Google Scholar 

  12. Doyle, B. B., and Brice, D. K., The analysis of elastic recoil detection data, Nucl. Instrum. Methods Phys. Res. Sect. B 35, 301 (1988).

    Article  Google Scholar 

  13. Benenson, R. E., Wielunski, L. S., and Lanford, W. A., Computer simulation of helium-induced forward recoil proton spectra for hydrogen concentration determinations, Nucl. Instrum. Methods Phys. Res. Sect. B 15, 453 (1986).

    Article  Google Scholar 

  14. Hofsäss, H. C., Parikh, N. R., Swanson, M. L., and Chu, W. H., Elastic recoil coincidence spectroscopy (ERCS), Nucl. Instrum. Methods Phys. Res. Sect. B 58, 49 (1991).

    Article  Google Scholar 

  15. Tirira, J., Frontier, J. P., Trocellier, P., and Trouslard, Ph., Development of a simulation algorithm for energy spectra of elastic recoil spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 54, 328 (1991).

    Article  Google Scholar 

  16. Päszti, F., Szilägyi, E., and Kbtai, E., Optimization of the depth resolution in elastic recoil detection, Nucl. Instrum. Methods Phys. Res. B 54, 507 (1991).

    Article  Google Scholar 

  17. Szilägyi, E., Päszti, E, and Amsel, G., Theoretical approach of depth resolution in IBA geometry, Nucl. Instrum. Methods Phys. Res. Sect. B 100, 103 (1995).

    Article  Google Scholar 

  18. Chu. W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry ( Academic, New York 1978 ), p. 203.

    Google Scholar 

  19. Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry ( Academic, New York 1978 ), p. 323.

    Google Scholar 

  20. Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry ( Academic, New York 1978 ), pp. 323–327.

    Google Scholar 

  21. Knoll, G. E, Radiation Detection and Measurement (Wiley, New York, 1979), pp. 111, 115, 127–30.

    Google Scholar 

  22. Amsel, G., L’Hoir, A., and Battistig, G., Projected small-angle multiple-scattering angular and lateral spread distribution and their combination, Part 1: Basic formulae and numerical results, submitted to Nucl. Instrum. Methods Phys Res. Sect. B.

    Google Scholar 

  23. Lanford, W. A., Analysis for hydrogen by nuclear reaction and energy recoil detection, Nucl. Instrum. Methods Phys. Res. Sect. B 66, 65 (1992).

    Article  Google Scholar 

  24. Zinke-Allmang, M., Kalbitzer, S., and Weiser M, Nuclear reaction spectrometry of vibrational modes of solids, Mat. Res. Soc. Symp. Proc. 82, 59 (1986).

    Article  Google Scholar 

  25. Bachelard, G., Essai sur la connaissance approchée (Librairie Philosophique J. Vrin, Paris, 1968 ), p. 151.

    Google Scholar 

  26. Guye, C. E., L’évolution physico-chimique ( Editions Chiron, Paris, 1922 ).

    Google Scholar 

  27. Campisano, S. U., Foti, G., Grasso, F., and Rimini, E., Determination of concentration profile in thin metallic films: applications and limitations of He* backscattering, Thin Solid Films 25, 431 (1975).

    Article  CAS  Google Scholar 

  28. Baglin, J. E. E., and Williams, J. S., in Ion Beams for Materials Analysis ( J. R. Bird and J. S. Williams, eds.) ( Academic, New York, 1989 ), pp. 132–41.

    Google Scholar 

  29. Valdés, J. E., Martinez-Tamayo, G., Arista, N. R., Lantschner, G. H., and Eckardt, J. C., The influence of foil roughness on low-energy stopping powers: calculations based on multiple-scattering theory, J. Phys. Condens. Matter 5, A293 (1993).

    Article  Google Scholar 

  30. Calmon, P., Contribution de l’analyse RBS à l’étude des effets d’irradiation sur la diffusion dans les verres d’oxydes, Rapport CEA-R-5560 (1991).

    Google Scholar 

  31. Marin, N., Serruys, Y., and Calmon, P., Extraction of lateral nonuniformity statistics from Rutherford backscattering spectra, Nucl. Instrum. Methods Phys. Res. Sect. B 108, 179 (1996).

    Article  CAS  Google Scholar 

  32. Edge, R. D., and Bill, U., Surface topology using Rutherford backscattering, Nucl. Instrum. Methods Phys. Res. 168, 157 (1980).

    Article  CAS  Google Scholar 

  33. Serruys, Y., and Bibic, N., unpublished work.

    Google Scholar 

  34. Thwaites, D. I., Review of stopping powers in organic materials, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 293 (1987).

    Article  Google Scholar 

  35. Thwaites, D. I., Departures from Bragg’s rule of stopping power additivity for ions in dosimetric and related materials, Nucl. Instrum. Methods Phys. Res. Sect. B 69, 53 (1992).

    Article  Google Scholar 

  36. Powers, D., An overview of current stopping power phenomena, measurements, and related topics, Nucl. Instrum. Methods Phys. Res. Sect. B 40 /41, 324 (1989).

    Article  Google Scholar 

  37. Santry, D. C., and Werner, R. D., Energy loss of 4He ions in Al2O3 and SiO2, Nucl. Instrum. Methods Phys. Res. Sect. B 14, 169 (1986).

    Article  Google Scholar 

  38. Boutard, D., Möller, W., and Scherzer, B. M. U., Influence of H-C bonds on the stopping power of hard and soft carbonized layers, Phys. Rev. B: Condens Matter 38, 2988 (1988).

    Article  CAS  Google Scholar 

  39. Neuwirth, W., Pietsch, W., Richter, K., and Hauser, U., On the invalidity of Bragg’s rule in stopping cross sections of molecules for swift Li ions, Z. Physik A 275, 215 (1975).

    Article  CAS  Google Scholar 

  40. Reiter, G., Baumgart, H., Kniest, N., Pfaff, E., and Clausnitzer, G., Proton and helium stopping cross sections in N2, 02, NO and N2O, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 287 (1987).

    Article  Google Scholar 

  41. Sabin, J. R., and Oddershede, J., Theoretical stopping cross sections of C-H, C-C and C=C bonds for swift ions, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 280 (1987).

    Article  Google Scholar 

  42. Sigmund, P., Kinetic theory of particle stopping in a medium with internal motion, Phys. Rev. A: Gen. Phys. 26, 2497 (1982).

    Article  CAS  Google Scholar 

  43. Dehmer, J. L., Inokuti, M., and Saxon, R. P., Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row, Phys. Rev A: Gen. Phys. 12, 102 (1975).

    Article  CAS  Google Scholar 

  44. Inokuti, M., Baer, T., and Dehmer, J. L., Addendum: Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row, Phys. Rev A: Gen. Phys. 17, 1229 (1978).

    Article  CAS  Google Scholar 

  45. Inokuti, M., Dehmer, J. L., Baer, T., and Hanson, J. D., Oscillator-strength moments, stopping powers, and total inelastic-scattering cross sections for all atoms through strontium, Phys. Rev A: Gen. Phys. 23, 95 (1981).

    Article  CAS  Google Scholar 

  46. Kreutz, R., Neuwirth, W, and Pietsch, W., Electronic stopping cross sections of liquid organic compounds for 200–840-keV Li ions, Phys. Rev. A: Gen. Phys. 22, 2598 (1980).

    Article  CAS  Google Scholar 

  47. Kreutz, R., Neuwirth, W., and Pietsch, W., Analysis of electronic stopping cross sections of organic compounds, Phys. Rev. A: Gen. Phys. 22, 2606 (1980).

    Article  CAS  Google Scholar 

  48. Bauer, P., Stopping power of light ions near the maximum, Nucl. Instrum. Methods Phys. Res. Sect. B 45, 673 (1990).

    Article  Google Scholar 

  49. Ziegler, J. F., and Manoyan, J. M., The stopping of ions in compounds, Nucl. Instrum. Methods Phys. Res. B 35, 215 (1988).

    Article  Google Scholar 

  50. Boutard, D., and Berthier, B., Irradiation-Induced Modifications in Metal—Silicon Interfaces under MeV-focused helium beam (IBMM’95 Conference, Canberra, Australia, Feb. 1995 ).

    Google Scholar 

  51. Boutard, D., and Berthier, B., private communication.

    Google Scholar 

  52. Vigouroux, J. P., Duraud, J. P., Le Moël, A., Le Gressus, C., and Boiziau, C., Radiation induced charges in SiO2, Nucl. Instrum. Methods Phys. Res. Sect. B 1, 521 (1984).

    Article  Google Scholar 

  53. Vigouroux, J. P., and Serruys, Y., Claquage, fractoemission, diffusion: rôle des défauts dans les diélectriques, Vide, Couches Minces 42, 419 (1987).

    CAS  Google Scholar 

  54. Régnier, P., Serruys, Y., and Zemskoff, A., Electric field stimulated sodium depletion of glass and related penetration of environmental atomic species, Phys. Chem. Glasses 27, 185 (1986).

    Google Scholar 

  55. Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment, J. Appl. Phys. 59, 1418 (1986).

    Article  Google Scholar 

  56. Cazaux, J., Electrostatics of insulators charged by incident electron beams, J. Microsc. Spectrosc. Electron. 11, 293 (1986).

    CAS  Google Scholar 

  57. Cazaux, J., and Lehuede, P., Some physical descriptions of the charging effects of insulators under incident particle bombardment, J. Electron Spectrosc. and Related Phenom. 59, 49 (1992).

    Article  CAS  Google Scholar 

  58. Cazaux, J., in Ionization of Solids by Heavy Particles, vol. 306 (R. A. Baragiola, ed.) (NATO ASI Series B, 1993), Physics, ( Plenum Press, New York ), pp. 325–350.

    Google Scholar 

  59. Cazaux, J., in Ionization of Solids by Heavy Particles, vol. 306 (R. A. Baragiola, ed.) (NATO ASI Series B, 1993), Physics, ( Plenum Press, New York ), pp. 325–350.

    Google Scholar 

  60. Cazaux, J., Correlations between ionization radiation damage and charging effects in transmission electron microscopy, Ultramicroscopy 60, 411 (1995).

    Article  CAS  Google Scholar 

  61. Blanchard, B., Carriere, P., Hilleret, N., Marguerite, J. L., and Rocco, J. C., Utilisation des canons à ions pour l’étude des isolants à l’analyseur ionique, Analusis 4, 180 (1976).

    CAS  Google Scholar 

  62. Williams, J. S., and Elliman, R. G., in Ion Beams for Materials Analysis ( J. R. Bird and J. S. Williams, eds.) ( Academic, New York, 1989 ), p. 303.

    Google Scholar 

  63. Janicki, C., Hinrichsen, P. F., Gujrathi, S. C., Brebner, J., and Martin, J.-P., An ERD/RBS/PIXE apparatus for surface analysis and channeling, Nucl. Instrum. Methods Phys. Res. B 34, 483 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Tirira, J., Serruys, Y., Trocellier, P. (1996). Elastic Spectrometry. In: Forward Recoil Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0353-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0353-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8012-2

  • Online ISBN: 978-1-4613-0353-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics