Advertisement

Introduction

  • Jorge Tirira
  • Yves Serruys
  • Patrick Trocellier

Abstract

When a beam of positive ions, produced by a single-ended Van de Graaff accelerator, a tandem, or a cyclotron (typically in the energy range from 0.1–5 MeV/amu) hits the near-surface region of a solid target, most incident particles are elastically scattered by the target atoms. Only a small number of incident ions are able to induce nuclear reactions on isotopes of light elements contained in the target. Energy transferred from an incident ion to a target nucleus during their elastic collision can be large enough so that the target nucleus recoils from the target surface. This elastic recoil process is simply described using kinematic equations from the physics of elastic collision. Elastic recoil detection analysis (ERDA*) consists in detecting recoiling nuclei to acquire information about the target composition.

Keywords

Depth Profile Method Phys Rutherford Backscatter Spectrometry Elastic Recoil Nuclear Reaction Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L’Ecuyer, J., Brassard, C., Cardinal, C., Chabbal, J., Deschênes, L., Labrie, J. P., Terreault, B., Martel, J. G., and Saint Jacques, R., An accurate and sensitive method for the determination of the depth distribution of light elements in heavy materials, J. Appl. Phys. 47, 381 (1976).CrossRefGoogle Scholar
  2. 2.
    Proc. of the Twelfth International Conference on Ion Beam Analysis (Tempe, Arizona, 22–26 May 1995), to be published in a special issue of Nucl. Instrum. Methods Phys. Res. Sect. B.Google Scholar
  3. 3.
    Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry ( Academic, New York, 1978 ).Google Scholar
  4. 4.
    Deconninck, G., Introduction to Radioanalytical Physics ( Elsevier Scientific Publishing, Amsterdam, 1978 ).Google Scholar
  5. 5.
    Johansson, S. A. E., and Campbell, J. L., PIXE: A Novel Technique for Elemental Analysis ( Wiley, Chichester, UK, 1988 ).Google Scholar
  6. 6.
    Mayer, J. W., and Rimini, E., Ion Beam Handbook for Material Analysis ( Academic, New York, 1977 ).Google Scholar
  7. 7.
    Bird, J. R., and Williams, J. S., Ion Beams forMaterials Analysis (Academic, Sydney, Australia, 1989 ).Google Scholar
  8. 8.
    Feldman, L. C., and Mayer, J. W., Fundamentals of Surface and Thin-Film Analysis (North Holland, New York, 1986 ).Google Scholar
  9. 9.
    Tesmer, J. R., and Nastasi, M., eds., Handbook of Modern Ion Beam Materials Analysis ( Materials Research Society, Pittsburgh, 1995 ).Google Scholar
  10. 10.
    Terreault, B., Martel, J. G., Saint Jacques, R. G., and L’Ecuyer, J., Depth profiling of light elements in materials with high-energy ion beams, J. Vac. Sci. Technol. 14, 492 (1977).CrossRefGoogle Scholar
  11. 11.
    L’Ecuyer, J., Brassard, C., Cardinal, C., and Terreault, B., The use of 6Li and 35C1 ion beams in surface analysis, Nucl. Instrum. Methods 149, 271 (1978).CrossRefGoogle Scholar
  12. 12.
    Doyle, B. L., and Peercy, P. S., Technique for profiling 1H with 2.5-MeV Van de Graaff accelerators, Appl. Phys. Lett. 34, 811 (1979).CrossRefGoogle Scholar
  13. 13.
    Groleau, R., Gujrathi, S. C., and Martin, J. P., Time-of-flight system for profiling recoiled light elements, Nucl. Instrum. Methods 218, 11 (1983).CrossRefGoogle Scholar
  14. 14.
    Thomas, J. P., Fallavier, M., Ramdane, D., Chevarier, N., and Chevarier, A., High-resolution depth profiling of light elements in high atomic mass materials, Nucl. Instrum. Methods 218 125 (1983).CrossRefGoogle Scholar
  15. 15.
    Gujrathi, S. C., and Bultena, S., Depth profiling of hydrogen using the high-efficiency ERD-TOF technique, Nucl. Instrum. Methods Phys. Res. Sect. B 64, 789 (1992).CrossRefGoogle Scholar
  16. 16.
    Ross, G. G., Terreault, B., Gobeil, G., Abel, G., Boucher, C., and Veilleux, G., Inexpensive, quantitative hydrogen depth profiling for surface probes, J. Nucl. Mater. 128/129, 730 (1984).Google Scholar
  17. 17.
    Ross, G. G., and Terreault, B., ERD measurement of the mean ranges and variances of 0.75–2.0 keV deuterium ions in Be, C and Si, Nucl. Instrum. Methods Phys. Res. Sect. B 45, 190 (1990).CrossRefGoogle Scholar
  18. 18.
    Ross, G. G., Terreault, B., Pageau, J. E, and Gollier, P. A., Nuclear microanalysis by means of 350-keV Van de Graaff accelerator, Nucl. Instrum. Methods Phys. Res. Sect. B 66, 17 (1992).CrossRefGoogle Scholar
  19. 19.
    Ross, G. G., and Leblanc, L., Depth profiling of hydrogen and helium isotopes by means of the ERD ExB technique, Nucl. Instrum. Methods Phys. Res. Sect. B 62, 484 (1992).CrossRefGoogle Scholar
  20. 20.
    Tirira, J., Trocellier, P., and Frontier, J. P., Analytical capabilities of ERDA in transmission geometry, Nucl. Instrum. Methods Phys. Res. Sect. B 45, 147 (1990).CrossRefGoogle Scholar
  21. 21.
    Tirira, J., Trocellier, P., Frontier, J. P., Massiot, P., Costantini, J. M., and Mori, V., 3D hydrogen profiling by elastic recoil detection analysis in transmission geometry, Nucl. Instrum. Methods Phys. Res. Sect. B 50, 135 (1990)CrossRefGoogle Scholar
  22. 22.
    Trocellier, P., Tirira, J., Massiot, P., Gosset, J., and Costantini, J. M., Nuclear microprobe study of the composition degradation induced in polyimides by irradiation with high-energy heavy ions, Nucl. Instrum. Methods Phys. Res. Sect. B 54, 118 (1991).CrossRefGoogle Scholar
  23. 23.
    Mosbah, M., Clocchiatti, R., Tirira, J., Gosset, J., Massiot, E, and Trocellier, P., Study of hydrogen in melt inclusions trapped in quartz with a nuclear microprobe, Nucl. Instrum. Methods Phys. Res. Sect. B 54,298 (1991).CrossRefGoogle Scholar
  24. 24.
    Tirira, J., Trocellier, P., Mosbah, M., and Metrich, N., Study of hydrogen content in solids by ERDA and radiation induced damage, Nucl. Instrum. Methods Phys. Res. Sect. B 56/57, 839 (1991).Google Scholar
  25. 25.
    Hofsäss, H. C., Parikh, N. R., Swanson, M. L., and Chu, W. K., Depth profiling of light elements using elastic recoil coincidence spectroscopy (ERCS), Nucl. Instrum. Methods Phys. Res. Sect. B 45, 151 (1990).CrossRefGoogle Scholar
  26. 26.
    Cohen, B. L., Fink, C. L., and Degnan, J. H., Nondestructive analysis for trace amounts of hydrogen, J. Appl. Phys. 43, 19 (1972).CrossRefGoogle Scholar
  27. 27.
    Smidt, F.A., Jr., and Pieper, A. G., Studies of the mobility of helium in vanadium, J. Nucl. Mater. 51, 361 (1974).CrossRefGoogle Scholar
  28. 28.
    Moore, J. A., Mitchell, I. V., Hollis, M. J., Davies, J. A., and Howe, L. M., Detection of low-mass impurities in thin films using MeV heavy-ion elastic scattering and coincidence detection techniques, J. Appl. Phys. 46 52 (1975).CrossRefGoogle Scholar
  29. 29.
    Hofsäss, H. C., Parikh, N. R., Swanson, M. L., and W. K. Chu, W. K., Elastic recoil coincidence spectroscopy (ERCS), Nucl. Instrum. Methods Phys. Res. Sect. B 58, 49 (1991).CrossRefGoogle Scholar
  30. 30.
    Klein, S. S., Separate determination of concentration profiles for atoms with different masses by simultaneous measurement of scattered projectile and recoil energies, Nucl. Instrum. Methods Phys. Res. Sect. B 15, 464 (1986).CrossRefGoogle Scholar
  31. 31.
    Rijken, H. A., Klein, S. S., and de Voigt, M. J. A., Improved depth resolution in CERDA by recoil time of flight measurement, Nucl. Instrum. Methods Phys. Res. Sect. B 64, 395 (1992).CrossRefGoogle Scholar
  32. 32.
    Chu, W. K., and Wu, D. T., Scattering recoil coincidence spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 35, 518 (1988).CrossRefGoogle Scholar
  33. 33.
    Arnoldbik, W. M., de Laat, C. T. A. M., and Habraken, E H. P. M., On the use of a AE-E telescope in elastic recoil detection, Nucl. Instrum. Methods Phys. Res. Sect. B 64, 832 (1992).CrossRefGoogle Scholar
  34. 34.
    Prozesky, V. M., Churms, C. L., Filcher, J. V., Springhorn, K. A., and Behrisch, R., ERDA measurement of hydrogen isotopes with a AE-E telescope, Nucl. Instrum. Methods Phys. Res. Sect. B 84, 373 (1994).CrossRefGoogle Scholar
  35. 35.
    Gyulai, J., Pdszti, F., Lohner, T., and Battistig, G., Proc. of the Eleventh International Conference on Ion Beam Analysis, Nucl. Instrum. Methods Phvs. Res. Sect. B 85 (1994).Google Scholar
  36. 36.
    Habraken, F. H. P. M., Light-element depth profiling using elastic recoil detection, Nucl. Instrum. Methods Phys. Res. Sect. B 68, 181 (1992).CrossRefGoogle Scholar
  37. 37.
    Oostra, D. J., RBS and ERD analysis in materials research of thin films, Philips J. Res. 47, 315 (1993).Google Scholar
  38. 38.
    Klein, S. S., Mutsaers, P. H. A., and Fischer, B. E., Mass selection and depth profiling by coincident recoil detection for nuclei in the middle mass region, Nucl. Instrum. Methods Phvs. Res. Sect. B 50, 150 (1990).CrossRefGoogle Scholar
  39. 39.
    Goppelt, P., Gebauer, B., Fink, D., Wilpert, M., Wilpert, Th., and Bohne, W., High-energy ERDA with very heavy ions using mass-and energy-dispersive spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 68, 235 (1992).CrossRefGoogle Scholar
  40. 40.
    Gebauer, B., Fink, D., Goppelt, P., Wilpert, M., and Wilpert, Th., Multidimensional ERDA measurements and depth profiling of medium-heavy elements, Nucl. Instrum. Methods Phvs. Res. Sect. B 50, 159 (1990).CrossRefGoogle Scholar
  41. 41.
    Goppelt, P., Biersack, J. P., Gebauer, B., Fink, D., Bohne, W., Wilpert, M., and Wilpert, Th., Investigation of thin films by high-energy ERDA, Nucl. Instrum. Methods Phys. Res. Sect. B 80/81, 142 (1993).CrossRefGoogle Scholar
  42. 42.
    Assmann, W., Hartung, P., Huber, H., Staat, P., Steffens, H., and Steinhausen, Ch., Setup for materials analysis with heavy ion beams at the Munich MP tandem, Nucl. Instrum. Methods Phys. Res. Sect. B 85, 726 (1994).CrossRefGoogle Scholar
  43. 43.
    Dollinger, G., Faestermann, T., and Maier-Komor, E, High-resolution depth profiling of light elements, Nucl. Instrum. Methods Phys. Res. Sect. B 64, 422 (1992).CrossRefGoogle Scholar
  44. 44.
    Neelmeijer, Ch., Grötzschel, R., Klabes, R., Kreissig, U., and Sobe, G., Study of carbon and oxygen incorporation in reactively sputtered Cr-Si-Al films using ERDA, Nucl. Instrum. Methods Phvs. Res. Sect. B 64, 461 (1992).CrossRefGoogle Scholar
  45. 45.
    Matzke, Hj., Della Mea, G., Dran, J. C., Rigato, V., and Bevilacqua, A., Chemical and physical modifications in waste glasses ion implanted at different temperatures. in Modifications Induced by Irradiation in Glasses ( P. Mazzoldi, ed.). ( North Holland, Amsterdam, 1992 ), pp. 25–31.Google Scholar
  46. 46.
    Wagner, W., Rauch, F., Ottermann, C., and Bange, K., Analysis of tungsten oxide films using MeV ion beams, Nucl. Instrum. Methods Phys. Res. Sect. B 68, 262 (1992).CrossRefGoogle Scholar
  47. 47.
    Rottschalk, M., Bachmann, T., and Witzmann, A., Investigation of proton exchanged optical waveguides in LiNbO3 using elastic recoil detection, Nucl. Instrum. Methods Phvs. Res. Sect. B 61, 91 (1991).CrossRefGoogle Scholar
  48. 48.
    Ascheron, C., Lehmann, D., Neelmeijer, C., Schindler, A., and Bigl, E, Hydrogen depth profiling in believed proton-implanted semiconductors by 4He ERDA and 19F NRA, Nucl. Instrum. Methods Phys. Res. Sect. B 63, 412 (1992).CrossRefGoogle Scholar
  49. 49.
    Nölscher, C., Brenner, K., Knauf, R., and Schmidt, W., Elastic recoil detection analysis of light particles (’H-160) using 30 MeV sulphur ions, Nucl. Instrum. Methods Phvs. Res. 218, 116 (1983).CrossRefGoogle Scholar
  50. 50.
    Kruse, 0., and Carstanjen, H. D., High-depth resolution ERDA of H and D by means of an electrostatic spectrometer, Nucl. Instrum. Methods Phys. Res. Sect. B 89, 191 (1994).CrossRefGoogle Scholar
  51. 51.
    Bruder, F., and Brenn, R., Measuring the binodal by interdiffusion in blends of deuterated polystyrene and poly(styrene-co-4-bromostyrene), Macromolecules 24, 5552 (1991).CrossRefGoogle Scholar
  52. 52.
    Wang, M., Schmidt, K., Reichelt, K., Jiang, X., Hübsch, H., and Dimigen, H., The properties of W-C: H films deposited by reactive rf sputtering, J. Mater. Res. 7, 1465 (1992).CrossRefGoogle Scholar
  53. 53.
    Roux, B., Chevarier, A., Chevarier, N., Wybourn, B., Antoine, C., Bonin, B., Bosland, E, and Cantacuzene, S., High-resolution hydrogen profiling in superconducting materials by ion beam analysis (ERD-E x B), Institut de Physique Nucléaire de Lyon Report LYCEN 9417 (1994).Google Scholar
  54. 54.
    Pivin, J. C., Stehle, J. L., Piel, J. P., and Allouard, M., Correlation between gradients of composition and dielectric properties in oxinitride or diamond like films on Si by means of spectroscopic ellipsometry and ion beam analysis, Philos. Mag. B 64, 1 (1991).Google Scholar
  55. 55.
    Quillet, V., Abel, F., and Schott, M., Absolute cross-section measurements for H and D elastic recoil using 1–2.5 MeV 4He ions, and for the 12C(d, p13C and 16O(d,pt)17O nuclear reactions, Nucl. Instrum. Methods Phys. Res. Sect. B 83, 47 (1993).CrossRefGoogle Scholar
  56. 56.
    Pászti, F., Kótai, E., Mezey, G., Manuaba, A., Pocs, L., Hildebrandt, D., and Strusny, H., Hydrogen and deuterium measurements by elastic recoil detection using alpha particles, Nucl. Instrum. Methods Phys. Res. Sect. B 15 486 (1986).CrossRefGoogle Scholar
  57. 57.
    Tirira, J., Bodart, F, Serruys, Y., and Morciaux, Y., Optimization algorithm for elastic recoil spectra simulation, Nucl. Instrum. Methods Phys. Res. Sect. B 79, 527 (1993).CrossRefGoogle Scholar
  58. 58.
    Antoni, V., Bagatin, M., Buffa, A., Della Mea, G., Freyre F, Jr., Mazzoldi, P., and Romanato, F., Investigation of the ETA-BETA II plasma edge by surface analysis of collector probes, Nuovo Cimento Soc. Ital. Fis. 13, 435 (1991).CrossRefGoogle Scholar
  59. 59.
    Compagnini, G., Calcagno, L., and Foti, G., Properties of fully implanted amorphous Si„C1_„: H alloys, Nucl. Instrum. Methods Phys. Res. Sect. B 80/81, 978 (1993).Google Scholar
  60. 60.
    Whitlow, H. J., Possnert, G., and Petersson, C. S., Quantitative mass and energy dispersive elastic recoil spectrometry resolution and efficiency considerations, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 448 (1987).CrossRefGoogle Scholar
  61. 61.
    Räisänen, J., Rauhala, E., Knox, J. M., and Harmon, J. F., Non-Rutherford cross sections in heavy ion elastic recoil spectrometry: 40–70 MeV 32S ions on carbon, nitrogen and oxygen, J. Appl. Phys. 75, 3273 (1994).CrossRefGoogle Scholar
  62. 62.
    Stensgaard, I., Surface studies with high-energy ion beams, Rep. Prog. Phys. 55 989 (1992).CrossRefGoogle Scholar
  63. 63.
    Ronkainen, H., Likonen, J., and Koskinen, J., Tribological properties of hard carbon films produced by the pulsed vacuum arc discharge method, Surf. Coat. Technol. 54/55, 570 (1992).CrossRefGoogle Scholar
  64. 64.
    Hrubcin, L., Huran, J., Sandrik, R., Kobzev, A. P., and Shirokov, D. M., Application of the ERD method for hydrogen determination in silicon (oxy)nitride thin films prepared by ECR plasma deposition, Nucl. Instrum. Methods Phys. Res. Sect. B 85, 60 (1994).CrossRefGoogle Scholar
  65. 65.
    Siegele, R., Davies, J. A., Forster, J. S., and Andrews, H. R., Forward elastic recoil measurements using heavy ions, Nucl. Instrum. Methods Phys. Res. Sect. B 90, 606 (1994).CrossRefGoogle Scholar
  66. 66.
    Forster, J. S., Leslie, J. R., and Laursen, T., Depth profiling of hydrogen isotopes in thin, low-Z films by scattering recoil coincidence spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 66, 215 (1992).CrossRefGoogle Scholar
  67. 67.
    Doyle, B. L., and Wing, N. D., The Sandia nuclear microprobe, Sandia Report SAND82–2393 (1982).Google Scholar
  68. 68.
    Wielunski, L. S., Benenson, R. E., and Lanford, W. A., Helium-induced hydrogen recoil analysis for metallurgical applications, Nucl. Instrum. Methods Phys. Res. 218, 120 (1983); see also Beming, P. R., and Benenson, R. E., An ERD based study of the electromigration of hydrogen in V, Ta, Nb and Ti, Nucl. Instrum. Methods Phys. Res. Sect. B 94, 130 (1994).CrossRefGoogle Scholar
  69. 69.
    Ila, D., Jenkins, G. M., Holland, L. R., Thompson, J., Evelyn, L., Hodges, A., Zimmerman, R. L., and Dalins, I., Measurement of accumulated contaminants in glassy carbon by RBS, ERD and NRA, Nucl. Instrum. Methods Phys. Res. Sect. Sect. B 64, 439 (1992).CrossRefGoogle Scholar
  70. 70.
    Arps, J. H., and Weller, R. A., Medium energy elastic recoil analysis of surface hydrogen, Nucl. Instrum. Methods Phys. Res. Sect. B 79, 539 (1993).CrossRefGoogle Scholar
  71. 71.
    Gossett, C. R., Use of a magnetic spectrometer to profile light elements by elastic detection, Nucl. Instrum. Methods Phys. Res. Sect. B 15, 481 (1986).CrossRefGoogle Scholar
  72. 72.
    Shull, K. R., Dai, K. H., Kramer, E. J., Fetters, L. J., Antonietti, M., and Sillescu, H., Diffusion by constraint release in branched macromolecular matrices, Macromolecules 24, 505 (1991).CrossRefGoogle Scholar
  73. 73.
    Russell, T. P., The characterization of polymer interfaces, Ann. Rev. Mater. Sci. 21, 249 (1991).CrossRefGoogle Scholar
  74. 74.
    Grill, A., Patel, V., and Meyerson, B. S., Temperature and bias effects on the physical and tribological properties of diamondlike carbon, J. Electrochem. Soc. 138, 2362 (1991).CrossRefGoogle Scholar
  75. 75.
    Wang, Y., Mohite, S. S., Bridwell, L. B., Giedd, R. E., and Sofield, C. J., Modification of high temperature and high performance polymers by ion implantation, J. Mater. Res. 8, 388 (1993).CrossRefGoogle Scholar
  76. 76.
    Gordon, R. G., Hoffman, D. M., and Riaz, U., Low-temperature atmospheric pressure chemical vapor deposition of polycrystalline tin nitride thin films, Chem. Mater. 4, 68 (1992).CrossRefGoogle Scholar
  77. 77.
    Bhattacharya, R. S., Rai, A. K., and McCormick, A. W., Ion-beam-assisted deposition of Al203 thin films, Surf. Coat. Anal. 46, 155 (1991).CrossRefGoogle Scholar
  78. 78.
    Liu, J. R., Zheng, Z. S., Zhang, Z. H., and Chu, W. K., RBS and ERD analysis using lithium ions, Nucl. Instrum. Methods Phys. Res. Sect. B 85, 51 (1994).CrossRefGoogle Scholar
  79. 79.
    Wallace, W. E., Zhong, Q., Genzer, J., Composto, R. J., and Bonnell, D. A., On the use of ion scattering to examine the role of hydrogen in the reduction of Ti02, J. Mater. Res. 8, 1629 (1993).CrossRefGoogle Scholar
  80. 80.
    Hu, B., Cholewa, M., Rivers, M. L., Smith, J. V., and Jones, K. W., Determination of hydrogen content of phlogopite in garnet peridotites using elastic recoil detection, Nucl. Instrum. Meth. Phys. Res. Sect. B 47 97 (1990).CrossRefGoogle Scholar
  81. 81.
    Arnold, G. W., Westrich, H. R., and Casey, W. H., Application of ion beam analysis (RBS and ERD) to the surface chemistry of leached minerals, Nucl. Instrum. Methods Phys. Res. Sect. B 64, 542 (1992).CrossRefGoogle Scholar
  82. 82.
    Freire, F. L., Jr., Achete, C. A., Graeff, C. F. 0., Chambouleyron, I., and Mariotto, G., Study of annealed amorphous hydrogenated films by elastic recoil detection analysis, Nucl. Instrum. Methods Phys. Res. Sect. B 85, 55 (1994).CrossRefGoogle Scholar
  83. 83.
    Alurralde, M., Garcia, E., Abriola, D., Filevich, A., Garcia-Bermudez, G., Aucouturier, M., and Siejka, J., Identification and depth profiling of light elements elastically recoiled by heavy ion beams. in Proc. of High-Energy and Heavy-Ion Beams in Materials Analysis Workshop (J. R. Tesmer, C. J. Maggiore, M. Nastasi, J. C. Barbour, and J. W. Mayer, eds.) (Materials Research Society, Albuquerque, New Mexico, 14–16, June 1989 ), pp. 119–127.Google Scholar
  84. 84.
    Wang, Y., Chen, J., and Huang, F., The calculation of the differential cross sections for recoil protons in 4He-p scattering, Nucl. Instrum. Methods Phys. Res. Sect. B 17, 11 (1986).CrossRefGoogle Scholar
  85. 85.
    Wang, Y., Huang, B., Cao, D., Cao, J., Zhu, D., and Shen, K., Analysis of hydrogen in oxygen-doped polysilicon by °He*-H elastic recoil detection, Nucl. Instrum. Methods Phys. Res. Sect. B 84, 111 (1994).CrossRefGoogle Scholar
  86. 86.
    Wang, Y., Liao, C., Yang, S., and Zheng, Z., A convolution analysis method for hydrogen concentration profiles by elastic recoil detection, Nucl. Instrum. Methods Phys. Res. Sect. B 47, 427 (1990).CrossRefGoogle Scholar
  87. 87.
    Long, X., Peng, X., He, F., Liu, M., and Lin, X., The hydrogen concentration of diamondlike carbon films by elastic recoil detection analysis, Nucl. Instrum. Methods Phys. Res. Sect. B 68, 266 (1992).CrossRefGoogle Scholar
  88. 88.
    Xiting, L., Zonghuang, X., Kungang, Z., Changwen, J., Xihong, Y., Hongtao, L., Dongxing, J., and Yanlin, Y., A new method for measuring stopping powers by ERD, Nucl. Instrum. Methods Phys. Res. Sect. B 58, 280 (1991).CrossRefGoogle Scholar
  89. 89.
    Liu, J., Peiran, Z., Feng, Y., Juinshi, Z., Houxian, Z., and Zhang Q., An overview of the ion beam laboratory at Beijing Institute of Physics, Nucl. Instrum. Methods Phys. Res. Sect. B 56/57, 1005 (1991).Google Scholar
  90. 90.
    Oura, K., Naitoh, M., Morioka, H., Watamori, M., and Shoji, E, Elastic recoil detection analysis of coadsorption of hydrogen and deuterium on clean Si surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B 85, 344 (1994).CrossRefGoogle Scholar
  91. 91.
    Matsunami, N., A study of carbon thin films by ion beams, Nucl. Instrum. Methods Phys. Res. Sect. B 64, 800 (1992).CrossRefGoogle Scholar
  92. 92.
    Arai, E., Zounek, A., Sekino, M., Takemoto, K., and Nittono, O., Depth profiling of porous silicon surface by means of heavy-ion TOF ERDA, Nucl. Instrum. Methods Phys. Res. Sect. B 85, 226 (1994).CrossRefGoogle Scholar
  93. 93.
    Kido, Y., Miyauchi, S., Takeda, 0., Nakayama, Y., Sato, M., and Kusao, K., Precise determination of H recoil cross sections for 1.5–3.0 MeV He ions, Nucl. Instrum. Methods Phys. Res. Sect. B 82, 474 (1993).CrossRefGoogle Scholar
  94. 94.
    Yamada, Y, Kasukabe, Y., Nagata, S., and Yamaguchi, S., Spontaneous hydrogenation of Ti films evaporated on NaC1 substrates I, Jpn. J. Appl. Phys. 29, L1888 (1990).CrossRefGoogle Scholar
  95. 95.
    Nagai, H., Hayashi, S., Aratani, M., Nozaki, T., Yanokura, M., and Kohno, I., Reliability, detection limit, and depth resolution of the elastic recoil measurement of hydrogen, Nucl. Instrum. Methods Phys. Res. Sect. B 28, 59 (1987).CrossRefGoogle Scholar
  96. 96.
    Niu, H., Wu, S., Huang, S., Lin, J., and Deng, R., Hydrogen depth profiling of SiNX films by the detection of recoiled protons, Nucl. Instrum. Methods Phys. Res. Sect. B 79, 536 (1993).CrossRefGoogle Scholar
  97. 97.
    Martin, J. W., Cohen, D. D., Dytlewski, N., Garton, D. B., Whitlow, H. J., and Russell, G. J., Materials characterisation using heavy ion elastic recoil time of flight spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 94, 277 (1994).CrossRefGoogle Scholar
  98. 98.
    Williams, J. S., Proc. of the Conference on Ion Beam Modification of Materials (Canberra, Australia, 7–11, Feb. 1995), to be published in a special issue of Nucl. Instrum. Methods Phys. Res. Sect. B.Google Scholar
  99. 99.
    Sie, S., Suter, G. E. Chekhmir, A., and Green, T. H., Microbeam recoil detection for the study of hydration of minerals, Nucl. Instrum. Methods Phys. Res. Sect. B 104, 261 (1995).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Jorge Tirira
    • 1
  • Yves Serruys
    • 2
  • Patrick Trocellier
    • 3
  1. 1.SECTORCourtaboeufFrance
  2. 2.DTA/CEREM/DECM/SRMPCEA SaclayFrance
  3. 3.CEA-CNRS Laboratoire Pierre Sue, DSM/DRECAMCEA SaclayFrance

Personalised recommendations