Basophils and Mast Cells Basic Biology and Clinical Significance

  • John J. Costa
  • Stephen J. Galli

Abstract

Basophils and mast cells are thought to represent critical effector cells in IgEdependent host responses to parasites and allergie diseases, and may also have important functions in a variety of other immunological, pathological, and perhaps physiological processes. Ehrlich identified mast cells in human connective tissues on the basis of the metachromatic staining properties of their prominent cytoplasmic granules (Ehrlich, 1878). Metachromasia refers to the change in color of some basic dyes that occurs when they bind to certain highly charged molecules, including some of the constituents of mast cell cytoplasmic granules. Ehrlich also described the basophil, a circulating leukocyte that contains cytoplasmic granules with staining properties similar to those of the mast cell (Ehrlich, 1879). Mast cells and basophils share several notable features besides staining properties (summarized in Table I). Both cell types are derived from bone marrow progenitor cells and both mast cells and basophils represent a major source of histamine and other potent chemical mediators which have been implicated in a wide variety of inflammatory and immunologie processes, including allergie disorders with components of immediate hypersensitivity (reviewed in Galli and Lichtenstein, 1988; Holgate et al., 1993; Metcalfe et al., 1981; Schwartz and Huff, 1993; Galli, 1990, 1993). All in all mammalian species yet analyzed, both mast cells and basophils express plasma membrane receptors (FcεRI) that specifically bind, with high affinity, the Fc portion of IgE antibody (Beaven and Metzger,, 1993; Kinet, 1990; Ishizaka, 1988; Benhamou and Siraganian, 1992).

Keywords

Tuberculosis Oncol Fibrinogen Rapamycin Butyrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, S. J., Weil, G. J., and Gleich, G. W., 1982, Formation of Charcot-Leyden crystals by human eosinophils, J. Exp. Med.155: 1609.Google Scholar
  2. Ackerman, S. J., Corrette, S. E., Rosenberg, H. F., Bennett, J. C., Mastrianni, D. M., Nicholson-Weller, A., Weller, P. F., Chin, D. T., and Tenen, D. G., 1993, Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily, J. Immunol.150: 456.PubMedGoogle Scholar
  3. Agis, H., Willheim, M., Sperr, W. R., Wilfing, A., Kromer, E., Kabrna, E., Spanblochl, E., Strobl, H., Geissler, K., Spitler, A., Boltz-Nitulescu, G., Majdic, O., Lechner, K., and Valent, P., 1993, Human blood monocytes do not make mast cells when cultured in the presence of SCF: Characterization of the circulating mast cell progenitor cell, J. Immunol.151: 4221.PubMedGoogle Scholar
  4. Aglietta, M., Camussi, G., and Piacibello, W., 1981, Detection of basophils growing in semisolid agar culture, Exp. Hematol.9: 95.PubMedGoogle Scholar
  5. Alam, R., Welter, J. B., Forsythe, P. A., Lett-Brown, M. A., and Grant, J. A., 1989, Comparative effect of recombinant IL-1, -2, -3, -4 and -6, IFN-γ, granulocyte-macrophage-colony-stimulating factor, tumor necrosis factor-α, and histamine-releasing factors on the secretion of histamine from basophils, J. Immunol.142: 3431.PubMedGoogle Scholar
  6. Alam, R., Lett-Brown, M. A., Forsythe, P. A., Anderson-Walters, D. J., Kenamore, C., Kormos, C., and Grant, J. A., 1992a, Monocyte chemotactic and activating factor is a potent histamine-releasing factor for basophils, J. Clin. Invest.89: 723.PubMedGoogle Scholar
  7. Alam, R., Forsythe, P. A., Stafford, S., Lett-Brown, M. A., and Grant, J. A., 1992b, Macrophage inflammatory protein-lα activates basophils and mast cells, J. Exp. Med.176: 781.PubMedGoogle Scholar
  8. Alter, S. C., and Schwartz, L. B., 1989, Tryptase: An indicator of mast cell-mediated allergic reactions, Prov. Chall. Proc.167: 183.Google Scholar
  9. Anderson, D. M., Lyman, D. S., Baird, A., Wignall, J. M., Eisenman, J., Rauch, C., March, C. J., Boswell, H. S., Grimpel, S. D., and Cosman, D., 1990, Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms, Cell 63: 235.PubMedGoogle Scholar
  10. Ando, A., Martin, T. R., and Galli, S. J., 1993, Effects of chronic treatment with the c-kit ligand, stem cell factor, on immunoglobulin E-dependent anaphylaxis in mice: Genetically mast cell-deficient S1/S1d mice acquire anaphylactic responsiveness, but the congenic normal mice do not exhibit augmented responses, J. Clin. Invest.92: 1639.PubMedGoogle Scholar
  11. Antman, K. H., 1990, G-CSF and GM-CSF in clinical trials, Yale J. Biol. Med.63: 387.PubMedGoogle Scholar
  12. Arizono, N., Matsuda, S., Hattori, T., Kojima, Y., Maeda, T., and Galli, S. J., 1990, Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin. Similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria, Lab. Invest.62: 626.PubMedGoogle Scholar
  13. Arock, M., Merle-Beral, H., Dugas, B., Ouaaz, F., Le Goff, L., Vouldoukis, I., Mencia-Huerta, J.-M., Schmitt, C., Leblond-Missenard, V., Debre, P., and Mosslayi, M. D., 1993, IL-4 release by human leukemic and activated normal basophils, J. Immunol.151: 1441.PubMedGoogle Scholar
  14. Askenase, P. W., 1980, Immunopathology of parasitic diseases: Involvement of basophils and mast cells, Springer Semin. Immunopathol.2: 417.Google Scholar
  15. Atkins, P. C., 1989, Cutaneous late phase responses-An allergic inflammatory response, Allergy Proc.10: 417.PubMedGoogle Scholar
  16. Bani-Sacchi, T., Barattini, M., Bianchi, S., Blandina, P., Brunelleschi, S., Fantozzi, R., Mannaioni, P. F., and Masini, E., 1986, The release of histamine by parasympathetic stimulation in guinea-pig auricle and rat ileum, J. Physiol (London) 371: 29.Google Scholar
  17. Bascom, R., Wachs, M., Naclerio, R. M., Pipkorn, U., Galli, S. J., and Lichtenstein, L. M., 1988, Basophil influx occurs after nasal antigen challenge: Effects of topical corticosteroid pretreatment, J. Allergy Clin. Immunol 81: 580.PubMedGoogle Scholar
  18. Beaven, M. A., and Metzger, H., 1993, Signal transduction by Fc receptors: The Fc epsilon RI case, Immunol. Today 14: 222.PubMedGoogle Scholar
  19. Benhamou, M., and Siraganian, R. P., 1992, Protein-tyrosine phosphorylation: An essential component of Fc RI signalling, Immunol. Today 13: 195.PubMedGoogle Scholar
  20. Benyon, R. C., Bissonette, E. Y., and Befus, A. D., 1991, Tumor necrosis factor-α dependent cytotoxicity of human skin mast cells is enhanced by anti-Ige antibiotics, J. Immunol.147: 2253.PubMedGoogle Scholar
  21. Besmer, P., 1991, The kit ligand encoded at the murine Steel locus: A pleiotropic growth and differentiation factor, Curr. Opin. Cell Biol.3: 939.PubMedGoogle Scholar
  22. Bieber, T., de la Salle, H., Wollenberg, A., Hakimi, J., Chizzonite, R., Ring, J., Hanau, D., and de la Salle, C., 1992, Human epidermal Langerhans’ cells express the high affinity receptor for immunoglobulin E (Fc RI), J. Exp. Med.175: 1285.PubMedGoogle Scholar
  23. Bienenstock, J., Befus, A. D., and Denburg, J. A., 1986, Mast cell heterogeneity: Basic questions and clinical applications, in: Mast Cell Differentiation and Heterogeneity (A. D. Befus, J. Bienenstock, and J. A. Denburg, eds.), Raven Press, New York, pp. 391–402.Google Scholar
  24. Bienenstock, J., Blennerhassett, M., Kakuta, Y., MacQueen, G., Marshall, J., Perdue, M., Siegel, S., Tsuda, T., Denburg, J., and Stead, R., 1989, Evidence for central and peripheral nervous system interaction with mast cells, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 275–284.Google Scholar
  25. Bischoff, S. C., and Dahinden, C. A., 1992, c-kit ligand, a unique potentiator of mediator release by human lung mast cells, J. Exp. Med.175: 237.PubMedGoogle Scholar
  26. Bischoff, S. C., de Weck, A. L., and Dahinden, C. A., 1990a, Interleukin 3 and granulocyte-colony- stimulating factor render human basophils responsive to low concentrations of complement component CSa, Proc. Natl. Acad. Sci. USA 87: 6813.PubMedGoogle Scholar
  27. Bischoff, S. C., Brunner, T., de Weck, A. L., and Dahinden, C. A., 1990b, Interleukin 5 modifies histamine release and leukotriene generation by human basophils in response to diverse agonists, J. Exp. Med.172: 1577.PubMedGoogle Scholar
  28. Bischoff, S. C., Krieger, M., Brunner, T., and Dahinden, C. A., 1992, Monocyte chemotactic protein 1 is a potent activator of human basophils, J. Exp. Med.175: 1271.PubMedGoogle Scholar
  29. Bochner, B. S., and Sterbinsky, S. A., 1991, Altered expression of CD11 and Leu 8 during human basophil degranulation, J. Allergy Clin. Immunol.87: 302, #649 (abstract).Google Scholar
  30. Bochner, B. S., Peachell, P. T., Brown, K. E., and Schleimer, R. P., 1988, Adherence of human basophils to cultured umbilical vein vascular endothelial cells, J. Clin. Invest.81: 1355.PubMedGoogle Scholar
  31. Bochner, B. S., MacGlashan, D. W., Marcotte, G. V., and Schleimer, R. P., 1989, IgE-dependent regulation of human basophil adherence to vascular endothelium, J. Immunol 142: 3180.PubMedGoogle Scholar
  32. Bochner, B. S., McKelvey, A. A., Sterbinsky, S. A., Hildreth, J. E., Derse, C. P., Klunk, D. A., Lichtenstein, L. M., and Schleimer, R. P., 1990, IL-3 augments adhesiveness for endothelium and CD11b expression in human basophils not neutrophils, J. Immunol 145: 1832.PubMedGoogle Scholar
  33. Bradding, P., Feather, I. H., Howarth, P. H., Mueller, R., Roberts, J. A., Britten, K., Bews, J. P. A., Hunt, T. C., Okayama, Y., Heusser, C. H., Bullock, G. R., Church, M. K., and Holgate, S. T., 1992, Interleukin 4 is localized to and released by human mast cells, J. Exp. Med.176: 1381.PubMedGoogle Scholar
  34. Bradding, P., Feather, I. H., Wilson, S., Bardin, P. G., Heusser, C. H., Holgate, S. T., and Howarth, P. H., 1993, Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitis subjects, J. Immunol 151: 3855.Google Scholar
  35. Bradley, B. L., Azzawi, M., Jacobson, M., Assoufi, B., Collins, J. V., Irani, A.-M.A., Schwartz, L. B., Durham, S. R., Jeffery, P. K., and Kay, A. B., 1991, Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: Comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness, J. Allergy Clin. Immunol 88: 661.PubMedGoogle Scholar
  36. Brain, S. D., and Williams, T. J., 1988, Substance P regulates the vasodilator activity of calcitonin gene- related peptide, Nature 335: 73.PubMedGoogle Scholar
  37. Bressler, R. B., Thompson, H. L., Keffer, J. M., and Metcalfe, D. D., 1989, Inhibition of the growth of IL-3-dependent mast cells from murine bone marrow by recombinant granulocyte-macrophage-colony- stimulating factor, J. Immunol.143: 135.PubMedGoogle Scholar
  38. Broide, D. H., Wasserman, S. I., Alvaro-Garcia, J., Zvaifler, N. I., and Firestein, G. S., 1989, Transforming growth factor-b1 selectively inhibits IL-3-dependent mast cell proliferation without affecting mast cell function or differentiation, J. Immunol.143: 1591.PubMedGoogle Scholar
  39. Broide, D. H., Gleich, G. J., Cuomo, A. J., Coburn, D. A., Federman, E. C., Schwartz, L. B., and Wasserman, S. I., 1991, Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway, J. Allergy Clin. Immunol.88: 637.PubMedGoogle Scholar
  40. Broide, D. H., Paine, M. M., and Firestein, G. S., 1992, Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics, J. Clin. Invest.90: 1414.PubMedGoogle Scholar
  41. Bromley, M., Fisher, W. D., and Woolley, D. E., 1984, Mast cells at sites of cartilage erosion in the rheumatoid joint, Ann. Rheum. Dis.43: 76.PubMedGoogle Scholar
  42. Brown, M. A., Pierce, J. H., Watson, C. J., Falco, J., Ihu, J. N., and Paul, W. E., 1987, B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells, Cell 50: 809.PubMedGoogle Scholar
  43. Brown, S. J., Galli, S. J., Gleich, G. J., and Askenase, P. W., 1982, Ablation of immunity to Amblyomma americanum by anti-basophil serum: Cooperation between basophils and eosinophils in expression of immunity to extoparasites (ticks) in guinea pigs, J. Immunol.129: 790.PubMedGoogle Scholar
  44. Brunner, T., Heusser, C. H., and Dahinden, C. A., 1993, Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation, J. Exp. Med.177: 605.PubMedGoogle Scholar
  45. Burastero, S. E., Fenoglio, D., Crimi, E., Brusasco, V., and Rossi, G. A., 1993, Frequency of allergen- specific T lymphocytes in blood and bronchial response to allergen in asthma, J. Allergy Clin. Immunol.91: 1075.PubMedGoogle Scholar
  46. Burd, P. R., Rogers, H. W., Gordon, J. R., Martin, C. A., Jayaraman, S., Wilson, S. D., Dvorak, A. M., Galli, S. J., and Dorf, M. E., 1989, Interleukin-3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines, J. Exp. Med.170: 245.PubMedGoogle Scholar
  47. Cass, F. M., Dixon, C. M., and Barnes, P. J., 1986, Inhaled platelet-activating factor causes bronchoconstriction and increased bronchial reactivity in man, Am. Rev. Respir. Dis.133: A212.Google Scholar
  48. Caughey, G. H., Leidig, F., Viro, N. F., and Nadel, J. A., 1988, Substance P and vasoactive intestinal peptide degranulation by mast cell tryptase and chymase, J. Pharmacol. Exp. Ther.244: 133.PubMedGoogle Scholar
  49. Cho, C. H., Hung, K. M., and Ogle, C. W., 1985, The aetiology of gastric ulceration induced by electrical vagal stimulation in rats, Eur. J. Pharmacol.110: 211.PubMedGoogle Scholar
  50. Chung, S. W., Wong, P. M. C., Shen-Ong, G., Pruscetti, S., Ishizaka, T., and Eaves, C. J., 1968, Production of granulocyte-macrophage colony-stimulating factor by Abelson virus-induced tumorigenic mast cell lines, Blood 68: 1074.Google Scholar
  51. Church, M. K., Benyon, R. C., Rees, P. H., Lowman, M. A., Campbell, A. M., Robinson, C., and Holgate, S. T., 1989, Functional heterogeneity of human mast cells, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 161–170.Google Scholar
  52. Coleman, J. W., Holliday, M. R., Kimber, I., Zsebo, K. M., and Galli, S. J., 1993, Regulation of mouse peritoneal mast cell secretory function by stem cell factor, IL-3 or IL-4, J. Immunol.150: 556.PubMedGoogle Scholar
  53. Columbo, M., Horowitz, E. M., Botana, L. M., MacGlashan, D. W., Jr., Bochner, B. S., Gillis, S., Zsebo, K. M., Galli, S., and Lichtenstein, L. M., 1992, The recombinant human c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils, J. Immunol.149: 599.PubMedGoogle Scholar
  54. Costa, J. J., Burd, R. P., and Metcalfe, D. D., 1992, Mast cell cytokines, in: The Role of the Mast Cell in Health and Disease (M. A. Kaliner and D. D. Metcalfe, eds.), Dekker, New York, pp. 443–466.Google Scholar
  55. Costa, J. J., Demetri, G. D., Hayes, D. F., Merica, E. A., Menchaca, D. M., and Galli, S. J., 1993a, Increased skin mast cells and urine methyl histamine in patients receiving recombinant methionyl human stem cell factor, Proc. Am. Assoc. Cancer Res.34: 211 (abstract).Google Scholar
  56. Costa, J. J., Matossian, K., Resnick, M. B., Beil, W. J., Wong, D. T. W., Gordon, J. R., Dvorak, A. M., Weller, R F., and Galli, S. J., 1993b, Human eosinophils can express the cytokines tumor necrosis factor-α and macrophage inflammatory protein-1α, J. Clin. Invest.91: 2673.PubMedGoogle Scholar
  57. Costa, J. J., Demetri, G. D. Harris, T. J., Dvorak, A. M., Hayes, D. F., Merica, E. A., Menchaca, D. M., Gringeri, A. J., and Galli, S. J., 1994, Recombinant human stem cell factor (rhSCF) induces cutaneous mast cell activation and hyperplasia, and hyperpigmentation in human in vivo, J. Allergy Clin. Immunol.93: 225a.Google Scholar
  58. Crisp, A. J., Chapman, C. M., Kirkham, S. E., Schiller, A. L., and Krane, S. M., 1984, Articular mastocytosis in rheumatoid arthritis, Arthritis Rheum.27: 845.PubMedGoogle Scholar
  59. Dahinden, C., Kurimoto, Y., de Weck, A. L., Lindley, I., Dewald, B., and Baggiolini, M., 1989, The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin-3 primed basophils, J. Exp. Med.170: 1787.PubMedGoogle Scholar
  60. del Pozo, V., de Andres, B., Martin, E., Maruri, N., Zubeldia, J. M., Palomino, P., and Lahoz, C., 1990, Murine eosinophils and IL-1: αIL-1 mRNA detection by in situ hybridization: Production and release of IL-1 from peritoneal eosinophils, J. Immunol.144: 3117.PubMedGoogle Scholar
  61. Dembo, M., Goldstein, B., Sobotka, A. K., and Lichtenstein, L. M., 1979, Degranulation of human basophils: Quantitative analysis of histamine release and desensitization, due to a bivalent penicilloyl hapten, J. Immunol.123: 1864.PubMedGoogle Scholar
  62. Demetri, G., Costa, J., Hayes, D., Sledge, G., Galli, S., Hoffman, R., Merica, E., Rich, W., Harkins, B., McGuire, B., and Gordon, M., 1993, A phase I trial of recombinant methionyl human stem cell factor (SCF) in patients with advanced breast carcinoma pre- and post-chemotherapy (CHEMO) with cyclophosphamide (C) and doxorubicin (A), Proc. Am. Soc. Clin. Oncol.12: A367 (abstract).Google Scholar
  63. Denburg, J. A., 1990, Cytokine-induced human basophil/mast cell growth and differentiation in vitro, Springer Semin. Immunopathol.12: 401.PubMedGoogle Scholar
  64. Denburg, J. A., Richardson, M., Telizyn, S., and Bienenstock, J., 1983, Basophil/mast cell precursors in human peripheral blood, Blood 61: 775.PubMedGoogle Scholar
  65. Desreumaux, P., Janin, A., Colombel, J. F., Prin, L., Plumans, J., Emilie, D., Torpier, G., and Capron, M., 1992, Interleukin-5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease, J. Exp. Med.175: 293.PubMedGoogle Scholar
  66. Dvorak, A. M., 1991, Basophil and Mast Cell Degranulation and Recovery, Volume 4, Plenum Press, New York.Google Scholar
  67. Dvorak, A. M., and Ackerman, S. J., 1989, Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to granules and intragranular crystals in mature human basophils, Lab. Invest.60: 557.PubMedGoogle Scholar
  68. Dvorak, A. M., Mihm, M. C., Jr., and Dvorak, H. F., 1976, Morphology of delayed-type hypersensitivity reactions in man. II. Ultrastructural alterations affecting the microvasculature and the tissue mast cells, Lab. Invest.34: 179.PubMedGoogle Scholar
  69. Dvorak, A. M., Newball, H. H., Dvorak, H. F., and Lichtenstein, L. M., 1980, Antigen-induced IgE- mediated degranulation of human basophils, Lab. Invest.43: 126.PubMedGoogle Scholar
  70. Dvorak, A. M., Lett-Brown, M., Thueson, D., and Grant, J. A., 1981, Complement-induced degranulation of human basophils, J. Immunol.126: 523.PubMedGoogle Scholar
  71. Dvorak, A. M., Nabel, G., Pyne, K., Cantor, H., Dvorak, H. F., and Galli, S. J., 1982, Ultrastructural identification of the mouse basophil, Blood 59: 1279.PubMedGoogle Scholar
  72. Dvorak, A. M., Galli, S. J., Schulman, E. S., Lichtenstein, L. M., and Dvorak, H. F., 1983a, Basophil and mast cell degranulation: Ultrastructural analysis of mechanisms of mediator release, Fed. Proc.42: 2510.PubMedGoogle Scholar
  73. Dvorak, A. M., Dvorak, H. F., and Galli, S. J., 1983b, Ultrastructural criteria for identification of mast cells and basophils in humans, guinea pigs, and mice, Am. Rev. Respir. Dis.128: S49.PubMedGoogle Scholar
  74. Dvorak, A. M., Dvorak, H. F., Peters, S. P., Schulman, E. S., MacGlashan, D. W., Jr., Pyne, K., Harvey, V. S., Galli, S. J., and Lichtenstein, L. M., 1983c, Lipid bodies: Cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells, J. Immunol 131: 2965.PubMedGoogle Scholar
  75. Dvorak, A. M., Hammel, I., Schulman, E. S., Peters, S. P., MacGlashan, D. W., Jr., Schleimer, R. P., et al., 1984, Differences in the behavior of cytoplasmic granules and lipid bodies during human lung mast cell degranulation, J. Cell Biol 99: 1678.PubMedGoogle Scholar
  76. Dvorak, A. M., Ishizaka, T., and Galli, S. J., 1985a, Ultrastructure of human basophils developing in vitro. Evidence for the acquisition of peroxidase by basophils, and for different effects of human and murine growth factors on human basophil and eosinophil maturation, Lab. Invest.53: 57.PubMedGoogle Scholar
  77. Dvorak, A. M., Schulmann, E. S., Peters, S. P., MacGlashan, D. W., Jr., Newball, H. H., Schleimer, R. P., and Lichtenstein, L. M., 1985b, Immunoglobulin E-mediated degranulation of isolated human lung mast cells, Lab. Invest.53: 45.PubMedGoogle Scholar
  78. Dvorak, A. M., Klebanoff, S. J., Henderson, W. R., Monahan, R. A., Pyne, K., and Galli, S. J., 1985c, Vesicular uptake of eosinophil peroxidase by guinea pig basophils and by cloned mouse mast cells and granule-containing lymphoid cells, Am. J. Pathol.118: 425.PubMedGoogle Scholar
  79. Dvorak, A. M., Furitsu, T., and Ishizaka, T., 1993a, Ultrastructural morphology of human mast cell progenitors in sequential cocultures of cord blood cells and fibroblasts, Int. Arch. Allergy Immunol.100: 219.PubMedGoogle Scholar
  80. Dvorak, A. M., Seder, R. A., Paul, W. E., Kissell-Rainville, S., Plaut, M., and Galli, S. J., 1993b, Ultrastructural characteristics of Fc R-positive basophils in the spleen and bone marrow of mice immunized with goat anti-mouse IgD antibody, Lab. Invest.68: 708.PubMedGoogle Scholar
  81. Ehrlich, P., 1878, Beitrage zur Theorie und Praxis der histologischen Farbung, Leipzig, Thesis.Google Scholar
  82. Ehrlich, P., 1879, Uber die spezifischen Granulationen de Blutes, Arch. Anat. Physiol. Abt. 571.Google Scholar
  83. Enander, I., Matsson, P., Nystrand, J., Andersson, A. S., Eklund, E., Bradford, T. R., and Schwartz, L. B., 1991, A new radioimmunoassay for human mast cell tryptase using monoclonal antibodies, J. Immunol. Methods 138: 39.PubMedGoogle Scholar
  84. Enerbäck, L., 1986, Mast cell heterogeneity: The evolution of the concept of a specific mucosal mast cell, in: Mast Cell Differentiation and Heterogeneity (A. D. Befus, J. Bienenstock, and J. A. Denburg, eds.), Raven Press, New York, pp. 1–26.Google Scholar
  85. Enerbäck, L., Pipkom, U., Aldenborg, F., and Wingren, U., 1989, Mast cell heterogeneity in man: Properties and function of human mucosal mast cells, in: Mast Cell and Basophil Differentiation and Function in Health and Diseases (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 27–37.Google Scholar
  86. Everitt, M., and Neurath, H., 1980, Rat peritoneal mast cell carboxypeptidase: Localization, purification, and enzymatic properties, FEBS Lett.110: 292.PubMedGoogle Scholar
  87. Ferguson, A. C., Whitelaw, M., and Brown, H., 1992, Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma, J. Allergy Clin. Immunol.90: 609.PubMedGoogle Scholar
  88. Flanagan, J. G., and Leder, P., 1990, The kit ligand: A cell surface molecule altered in Steel mutant fibroblasts, Cell 62: 185.Google Scholar
  89. Flanagan, J. G., Chan, D. C., and Leder, P., 1991, Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the S1d mutant, Cell 64: 1025.PubMedGoogle Scholar
  90. Foreman, J. C., 1987, Substance P and calcitonin gene-related peptide: Effects on mast cells and in human skin, Int. Arch. Allergy Appl. Immunol. 82: 366.PubMedGoogle Scholar
  91. Foreman, J. C., and Jordan, C. C., 1983, Histamine release and vascular changes induced by neuropeptides, Agents Actions 13: 105.PubMedGoogle Scholar
  92. Freemont, A. J., and Denton, J., 1985, Disease distribution of synovial fluid mast cells cytophagocytic mononuclear cells in inflammatory arthritis, Ann. Rheum. Dis.44: 312.PubMedGoogle Scholar
  93. Furitsu, T., Saito, H., Dvorak, A. M., Schwartz, L. B., Irani, A. M. A., Burdick, J. F., Ishizaka, K., and Ishizaka, T., 1989, Development of human mast cells in vitro, Proc. Natl. Acad. Sci. USA 86: 10039.PubMedGoogle Scholar
  94. Galli, S. J., 1990, New insights into the “riddle of mast cells”: Microenvironmental regulation of mast cell development and phenotypic heterogeneity, Lab. Invest.62: 5.PubMedGoogle Scholar
  95. Galli, S. J., 1993, New concepts about the mast cell, N. Engl. J. Med.328: 257.PubMedGoogle Scholar
  96. Galli, S. J., and Askenase, P. W., 1986, Cutaneous basophil hypersensitivity, in: The Reticuloendothelial System: A Comprehensive Treatise (P. Abramoff, S. M. Phillips, and M. R. Escobar, eds.), Plenum Press, New York, pp. 321–369.Google Scholar
  97. Galli, S. J., and Dvorak, A. M., 1995, Production, biochemistry, and function of basophils and mast cells, in: Williams Hematology, 5th ed. (E. Beutler, M. A. Lichtman, B. S. Coller, and T. J. Kipps, eds.), McGraw-Hill, New York, pp. 805–810.Google Scholar
  98. Galli, S. J., and Hammel, I., 1984, Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice, Science 226: 710.PubMedGoogle Scholar
  99. Galli, S. J., and Kitamura, Y., 1987, Animal model of human disease. Genetically mast cell-deficient W/Wv and S/S1d mice: Their value for the analysis of the roles of mast cells in biological responses in vivo, Am. J. Pathol.127: 191.PubMedGoogle Scholar
  100. Galli, S. J., and Lichtenstein, L. M., 1988, Biology of mast cells and basophils, in: Allergy: Principles and Practice, 3rd ed. (E. Middleton, Jr., C. E. Reed, E. F. Ellis, N. F. Adkinson, Jr., and J. W. Yunginger, eds.), Mosby, St. Louis, pp. 106–134.Google Scholar
  101. Galli, S. J., Dvorak, A. M., and Dvorak, H. F., 1984, Basophils and mast cells: Morphologic insights into their biology, secretory patterns, and functions, Prog. Allergy 34: 1.PubMedGoogle Scholar
  102. Galli, S. J., Gordon, J. R., and Wershil, B. K., 1991a, Cytokine production by mast cells and basophils, Curr. Opin. Immunol.3: 865.PubMedGoogle Scholar
  103. Galli, S. J., Tsai, M., Langley, K. E., Zsebo, K. M., and Geissler, E. N., 1991b, Stem cell factor (SCF), a ligand for c-kit, induces mediator release from some populations of mouse mast cells, FASEB J.5: A1092.Google Scholar
  104. Galli, S. J., Geissler, E. N., Wershil, B. K., Gordon, J. A., Tsai, M., and Hammel, I., 1992, Insights into mast cell development and function derived from analyses of mice carrying mutations at beige, W.c-kit or S1/SCF (c-kit ligand) loci, in: The Role of the Mast Cell in Health and Disease (M. A. Kalinger and D. D. Metcalfe, eds.), Dekker, New York, pp. 129–202.Google Scholar
  105. Galli, S. J., Iemura, A., Garlick, D. S., Gamba-Vitalo, C., Zsebo, K. M., and Andrews, R. G., 1993, Reversible expansion of primate mast cell populations in vivo by stem cell factor, J. Clin. Invest.91: 148.PubMedGoogle Scholar
  106. Galli, S. J., Zsebo, K. M., and Geissler, E. N., 1994, The kit ligand, stem cell factor, Adv. Immunol.55: 1.PubMedGoogle Scholar
  107. Ganser, A., Lindemann, A., Seipelt, G., Ottmann, O. G., Herrmann, F., Eder, M., Frisch, J., Schulz, G., Mertelsmann, R., and Hoelzer, D., 1990, Effects of recombinant human interleukin-3 in patients with normal hematopoiesis and in patients with bone marrow failure, Blood 76: 666.PubMedGoogle Scholar
  108. Ganser, A., Lindemann, A., Seipelt, G., Ottmann, O. G., Herrmann, F., Eder, M., Frisch, J., Schulz, G., Mertelsmann, R., and Hoelzer, D., 1991, Clinical effects of recombinant human interleukin-3, Am. J. Clin. Oncol.14: S51.PubMedGoogle Scholar
  109. Gibbins, I. L., Furness, J. B., Costa, M., Maclntyre, I., Hillyard, C. J., and Girigis, S., 1985, Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular, and visceral sensory neurons of guinea pigs, Neurosci. Lett.57: 125.PubMedGoogle Scholar
  110. Gilbert, H. S., and Ornstein, L., 1975, Basophil counting with a new staining method using alcian blue, Blood 46: 279.PubMedGoogle Scholar
  111. Godfrey, H. P., Ilardi, C., Engber, W., and Graziano, F. U., 1984, Quantitation of human synovial mast cells in rheumatoid arthritis and other rheumatic diseases, Arthritis Rheum.27: 852.PubMedGoogle Scholar
  112. Goetzl, E. J., Finch, R. J., Peterson, K. E., Turck, C. W., and Sneedharan, S. P., 1989, Mast cell and basophil mediation of lymphocytic functions, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 247–254.Google Scholar
  113. Gordon, J. R., and Galli, S. J., 1990, Mast cells as a source of both preformed and immunologically inducible TNF-α-cachectin, Nature 346: 274.PubMedGoogle Scholar
  114. Gordon, J. R., and Galli, S. J., 1991, Release of both preformed and newly synthesized tumor necrosis factor a (TNF-α)/cachectin by mouse mast cells stimulated by the Fc RI. A mechanism for the sustained action of mast cell-derived TNF-α during IgE-dependent biological responses, J. Exp. Med.174: 103.PubMedGoogle Scholar
  115. Gordon, J. R., Burd, P. R., and Galli, S. J., 1990, Mast cells as a source of multifunctional cytokines, Immunol. Today 11: 458.PubMedGoogle Scholar
  116. Grant, J. A., Dupree, E., Goldman, A. S., Schultz, D. R., and Jackson, A. L., 1975, Complement-mediated release of histamine from human leukocytes, J. Immunol.114: 1101.PubMedGoogle Scholar
  117. Gruber, B. L., Marchese, M. J., Suzuji, K., Schwartz, L. B., Okada, Y., Nagase, H., and Ramamurthy, N. S., 1989, Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation, J. Clin. Invest.84: 1657.PubMedGoogle Scholar
  118. Gundel, R. H., Wegner, C. D., Torcellini, C. A., et al., 1991, Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late phase airway obstruction in monkeys, J. Clin. Invest.88: 1407.PubMedGoogle Scholar
  119. Guo, C.-B., Liu, M. C., Galli, S. J., Bochner, B. S., Kagey-Sobotka, A., and Lichtenstein, L. M., 1994, Identification of Ige bearing cells in the late phase response to antigen in the lung as basophils, Am. J. Respir. Cell Mol. Biol.10: 384.PubMedGoogle Scholar
  120. Gurish, M. F., Ghildyal, N., Arm, J., Austen, K. F., Avraham, S., Reynolds, D., and Stevens, R. L., 1991, Cytokine mRNA are preferentially increased relative to secretory granule protein mRNA in mouse bone marrow-derived mast cells that have undergone IgE-mediated activation and degranulation, J. Immunol.146: 1527.PubMedGoogle Scholar
  121. Haak-Frendscho, M., Arai, N., Arai, K.-I., Baeza, M. L., Finn, A., and Kaplan, A. R, 1988, Human recombinant granulocyte-macrophage colony-stimulating factor and interleukin 3 cause basophil histamine release, J. Clin. Invest.82: 17.PubMedGoogle Scholar
  122. Haig, D. M., Huntley, J. F., MacKellar, A., Newlands, G. F. J., Inglis, L., Sangha, R., Cohen, D., Hapel, A., Galli, S. J., and Miller, H. R. P., 1994, Effects of stem cell factor (kit-ligand) and interleukin-3 on the growth and serine proteinase expression of rat bone marrow-derived or serosal mast cells, Blood 83: 72.PubMedGoogle Scholar
  123. Hamid, Q., Barkans, J., Meng, Q., Ying, S., Abrams, J. S., Kay, A. B., and Moqbel, R., 1992, Human eosinophils synthesize and secrete interleukin-6, in vitro, Blood 80: 1496–1501.PubMedGoogle Scholar
  124. Hayashi, S.-I., Kunisada, T., Ogawa, M., Yamaguchi, K., and Nishikawa, S.-I., 1991, Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse, Nucleic Acids Res.19: 1267.PubMedGoogle Scholar
  125. Hirai, K., Morita, Y., Misaki, Y., Ohta, K., Takaishi, T., Suzuki, S., Motoyoshi, K., and Miyamoto, T., 1988, Modulation of human basophil histamine release by hemopoietic growth factors, J. Immunol.141: 3958.PubMedGoogle Scholar
  126. Hirai, K., Yamaguchi, M., Misaki, Y., Takaishi, T., Ohta, K., Morita, K., Ito, K., and Miyamoto, T., 1990, Enhancement of human basophil histamine release by interleukin 5, J. Exp. Med.172: 1525.PubMedGoogle Scholar
  127. Holgate, S. T., Robinson, C., and Church, M. K., 1993, Mediators of immediate hypersensitivity, in: Allergy, Principles and Practice, 4th ed. (E. Middleton, Jr., C. E. Reed, E. F. Ellis, N. F. Adkinson, Jr., J. W. Yunginger, and W. W. Burrs, eds.), Mobsy, St. Louis, pp. 267–301.Google Scholar
  128. Hook, W. A., Schiffman, E., Aswaniklemar, S., and Siraganian, R. P., 1976, Histamine release by chemotactic formyl methionine-containing peptides, J. Immunol.117: 594.PubMedGoogle Scholar
  129. Huang, E., Nocka, K., Beier, D. R., Chu, T. Y., Buck, J., Lahm, H. W., Wellner, D., Leder, P., and Besmer, P., 1990, The hematopoietic growth factor KL is encoded at the S1 locus and is the ligand of the c-kit receptor, the gene product of the W locus, Cell 63: 225.PubMedGoogle Scholar
  130. Hultner, L., Moeller, J., Schmitt, E., Jager, G., Reisbach, G., Ring, J., and Dormer, P., 1989, Thiol-sensitive mast cell lines derived from mouse bone marrow respond to a mast cell growth-enhancing activity different from both IL-3 and IL-4, J. Immunol.142: 3440.PubMedGoogle Scholar
  131. Hultner, L., Druez, C., Moeller, J., Uyttenhove, C., Schmitt, E., Ruce, E., Dormer, P., and Van Snick, J., 1990, Mast cell growth enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGF III, Eur. J. Immunol.20: 1413.PubMedGoogle Scholar
  132. Humphries, R. K., Abraham, S., Krystal, G., Lansdorp, P., Lemolne, F., and Eaves, C. J., 1988, Activation of multiple hemopoietic growth factor genes in Abelson virus-transformed myeloid cells, Exp. Hematol.16: 774.PubMedGoogle Scholar
  133. Hutt-Taylor, S. R., Harnish, D., Richardson, M., Ishizaka, T., and Denburg, J. A., 1988, Sodium butyrate and a T-lymphocyte cell line-derived differentiation factor induce basophilic differentiation of the human promyelocytic leukemia cell line HL-60, Blood 71: 209.PubMedGoogle Scholar
  134. Iemura, A., Tsai, M., Ando, A., Wershil, B. K., and Galli, S. J., 1994, The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis, Am. J. Pathol 83: 72.Google Scholar
  135. Irani, A. A., Schechter, N. M., Craig, S. S., DeBlois, G., and Schuartz, L. B., 1986, Two human mast cell subsets with distinct neutral protease compositions, Proc. Natl Acad. Sci. USA 83: 4464.PubMedGoogle Scholar
  136. Irani, A. A., Craig, S. S., DeBlois, G., Elson, C. O., Schechter, N. M., and Schwartz, L. B., 1987, Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function, J. Immunol 138: 4386.Google Scholar
  137. Irani, A.-M. A., Nilsson, G., Mettinen, U., Craig, S. S., Ashman, L. K., Ishizaka, T., Zsebo, K. ML, and Schwartz, L. B., 1992, Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed fetal liver cells, Blood 80: 3009.PubMedGoogle Scholar
  138. Ishizaka, T., 1988, Mechanisms of IgE-mediated hypersensitivity, in: Allergy: Principles and Practice, 3rd ed. (E. Middleton, Jr., C. E. Reed, E. F. Ellis, N. F. Adkinson, Jr., and J. W. Yunginger, eds.), Mosby, St. Louis, pp. 71–93.Google Scholar
  139. Ishizaka, T., Dvorak, A. M., Conrad, D. H., Niebyl, J. R., Marquetti, J. P., and Ishizaka, K., 1985, Morphologic and immunologic characterization of human basophils developed in cultures of cord blood mononuclear cells, J. Immunol.134: 532.PubMedGoogle Scholar
  140. Jacobson, R. H., Reed, N. D., and Manning, D. D., 1977, Expulsion of Nippostrongylus, brasiliensis from mice lacking antibody production potential, Immunology 32: 867.PubMedGoogle Scholar
  141. Jacoby, W., Cammarata, P. V., Findley, S., and Pincus, S. H., 1984, Anaphylaxis in mast cell-deficient mice, J. Invest. Dermatol.83: 302.PubMedGoogle Scholar
  142. Jarjour, N. N., Calhoun, W. J., Stevens, C. A., and Salisbury, S. M., 1992, Exercise-induced asthma is not associated with mast cell activation or airway inflammation, J. Allergy Clin. Immunol.89: 60.PubMedGoogle Scholar
  143. Jarrett, E. E. E., and Miller, H. R. P., 1982, Production and activities of IgE in helminth infections, Prog. Allergy 31: 178.PubMedGoogle Scholar
  144. Johnson, L. A., Moon, K. E., and Eisenberg, M., 1968, Purification to homogeneity of the human skin chymotryptic proteinase “chymase”, Ann. Biochem.155: 358.Google Scholar
  145. Juhlin, L., 1963, Basophil leukocyte differential in blood and bone marrow, Acta Haematol.29: 89.Google Scholar
  146. Juhlin, L., and Michaelsson, G., 1977, A new syndrome characterized by absence of eosinophils and basophils, Lancet 1: 1233.PubMedGoogle Scholar
  147. Kanakura, Y., Thompson, H., Nakano, T., Yamamura, T., Asai, H., Kitamura, Y., Metcalfe, D. D., and Gaui, S. J., 1988, Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cell, Blood 72: 877.PubMedGoogle Scholar
  148. Kay, A. B., 1992, “Helper” (CD4+) T cells and eosinophils in allergy and asthma, Am. Rev. Respir. Dis.145: S22.PubMedGoogle Scholar
  149. Kiernan, J. A., 1977, Study of chemically induced acute inflammation in the skin of the rat, Q. J. Exp. Physiol.62: 151.Google Scholar
  150. Kinet, J.-P., 1990, The high-affinity receptor for IgE, Curr. Opin. Immunol.2: 499.Google Scholar
  151. Kips, J. C., Tavernier, J., and Pauwels, R. A., 1992, Tumor necrosis factor causes bronchial hyperrespon- siveness in rats, Am. Rev. Respir. Dis.145: 332.PubMedGoogle Scholar
  152. Kirschenbaum, A. S., Goff, J. P., Dreskin, S. C., Irani, A.-M., Schwartz, L. B., and Metcalfe, D. D., 1989a, Interleukin-3-dependent growth of basophil-like and mast-like cells from human bone marrow, J. Immunol.42: 2424.Google Scholar
  153. Kirshenbaum, A. S., Dreskin, S. C., and Metcalfe, D. D., 1989b, A staphylococcal protein A rosetting assay for the demonstration of high affinity IgE receptors on rIL-3-dependent human basophil-like cells grown in mixed culture, J. Immunol.123: 55.Google Scholar
  154. Kirshenbaum, A. S., Kessler, S. W., Goff, J. P., and Metcalfe, D. D., 1991, Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells, J. Immunol.146: 1410.PubMedGoogle Scholar
  155. Kirshenbaum, A. S., Goff, J. P., Kessler, S. W., Mican, J. M., Zsebo, K. M., and Metcalfe, D. D., 1992, Effect of IL-3 and stem cell factor on the appearance of human basophil and mast cells from CD34+ pluripotent progenitor cells, J. Immunol.148: 772.PubMedGoogle Scholar
  156. Kita, H., Ohnishi, T., Okubo, Y., Weller, D., Abrams, J. S., and Gleich, G. J., 1991, Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils, J. Exp. Med.174: 745.PubMedGoogle Scholar
  157. Kitamura, Y., 1989, Heterogeneity of mast cells and phenotypic changes between subpopulations, Annu. Rev. Immunol.7: 59.PubMedGoogle Scholar
  158. Kitamura, Y., and Go, S., 1979, Decreased production of mast cells in S1/S1d mice, Blood 53: 492.PubMedGoogle Scholar
  159. Kitamura, Y., Go, S., and Hatanaka, S., 1978, Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation, Blood 52: 447.PubMedGoogle Scholar
  160. Kitamura, Y., Nakayama, H., and Fujita, J., 1989, Mechanisms of mast cell deficiency in mutant mice of W/Wv and S/S1d genotype, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 15–25.Google Scholar
  161. Kjellen, L., and Lindahl, U., 1991, Proteoglycans: Structures and interactions, Annu. Rev. Biochem.60:443.PubMedGoogle Scholar
  162. Klein, L. M., Lavker, R. M., Matis, W. L., and Murphy, G. F., 1989, Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion, Proc. Natl. Acad. Sci. USA 86: 8972.PubMedGoogle Scholar
  163. Kowalski, M. L., and Kaliner, M. A., 1988, Neurogenic inflammation, vascular permeability, and mast cells, J. Immunol.140: 3905.PubMedGoogle Scholar
  164. Kuna, P., Reddigari, S. R., Kornfield, D., and Kaplan, A. P., 1991, IL-8 inhibits histamine release from human basophils induced by histamine releasing factors, connective tissue activating peptide III, and IL-3, Immunol.147: 1920.Google Scholar
  165. Kuna, P., Reddigari, S. R., Rucinski, D., Oppenheim, J. J., and Kaplan, A. P., 1992, Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils, J. Exp. Med.175: 489.PubMedGoogle Scholar
  166. Kuna, P., Reddigari, S. R., Schall, T. J., Rucinski, D., Sadlick, M., and Kaplan, A. P., 1993, Characterization of the human basophil response to cytokines, growth factors, and histamine releasing factors of the intercrine/chemokine family, J. Immunol.150: 1932.PubMedGoogle Scholar
  167. Lagunoff, D., and Benditt, E. P., 1963, Proteolytic enzymes of mast cells, Ann. N.Y. Acad. Sci.103: 185.PubMedGoogle Scholar
  168. Lawrence, I. D., Warner, J. A., Cohan, V. L., Hubbard, W. C., Kagey-Sobotka, A., and Lichtenstein, L. M., 1987, Purification and characterization of human skin mast cells: Evidence for human mast cell heterogeneity, J. Immunol.139: 3062.PubMedGoogle Scholar
  169. Leary, A. G., Ikebuchi, K., Hirai, Y., Wong, A. A., Yang, Y. C., Clark, S. C., and Ogawa, M., 1988, Synergism between interleukin-6 and interleukin-3 in supporting proliferation of human hematopoietic stem cells: comparison with interleukin-1α, Blood 71: 1759.PubMedGoogle Scholar
  170. Lee, F., Yokota, T., Otsuka, T., Meyerson, P., Villaret, D., Coffman, R., Mosmann, T., Rennick, D., Roehm, N., Smith, C., et al., 1986, Isolation and characterization of a mouse interleukin cDNA clone that expresses B cell stimulatory factor 1 activities and T cell and mast cell stimulating activities, Proc. Natl. Acad. Sci. USA 83: 2061.PubMedGoogle Scholar
  171. Lemanske, R. F., Jr., and Kaliner, M. A., 1993, Late phase allergic reactions, in: Allergy: Principles and Practice, 4th ed. (E. Middleton, Jr., C. E. Reed, E. F. Ellis, N. F. Adkinson, Jr., J. W. Yunginger, and W. W. Busse, eds.), Mosby, St. Louis, pp. 320–361.Google Scholar
  172. Lerner, N. B., Nocka, K. H., Cole, S. R., Qui, F. H., Strife, A., Ashman, L. K., and Besmer, P., 1991, Monoclonal antibody YB5.B8 identifies the human c-kit protein product, Blood 77: 1876.PubMedGoogle Scholar
  173. Le Trong, H., Neurath, H., and Woodbury, R. G., 1987, Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells, Proc. Natl Acad. Sci. USA 84: 364.PubMedGoogle Scholar
  174. Lett-Brown, M. A., Boetcher, D. A., and Leonard, E. J., 1976, Chemotactic responses of normal human basophil to C5a and 5 lymphocyte-derived chemotactic factor, J. Immunol 117: 246.PubMedGoogle Scholar
  175. Leung, D. Y. M., Pober, J. S., and Cotrans, R. S., 1991, Expression of endothelial-leukocyte adhesion molecule-1 in elicited late phase allergic reactions, J. Clin. Invest.87: 1805.PubMedGoogle Scholar
  176. Levi-Schaffer, F., Austen, K. F., Gravallese, P. M., and Stevens, R. L., 1986, Co-culture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells, Proc. Natl Acad. Sci. USA 83: 6485.PubMedGoogle Scholar
  177. Lichtenstein, L. M., Schleimer, R. P., MacGlashan, D. W., Jr., et al, 1984, In vitro and in vivo studies of mediator release from human mast cells, in: Asthma III: Physiology, Immunopharmacology, and Treatment (A. B. Kay, K. F. Austen, and L. M. Lichtenstein, eds.), Academic Press, New York, pp. 1–23.Google Scholar
  178. Liu, M. C., Hubbard, W. C., Proud, D., Stealey, B. A., Galli, S. J., Kagey-Sobotka, A., Bleeker, E. R., and Lichtenstein, L. M., 1991, Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: Cellular, mediator and permeability changes, Am. Rev. Respir. Dis.144: 51.PubMedGoogle Scholar
  179. Liu, M. C., Matossian, K., Wong, D. T. W., Weller, P. F., and Galli, S. J., 1992, Expression of mRNA for transforming growth factor-α (TGF-α) by eosinophils at sites of segmental airway challenge with antigen in allergic asthmatic subjects, Am. Rev. Respir. Dis.145: A452 (abstract).Google Scholar
  180. Lundberg, J. M., Franco-Cereceda, A., Hua, X., Hokfeit, T., and Fischer, J. A., 1985, Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin, Eur. J. Pharmacol.108: 315.PubMedGoogle Scholar
  181. McClure, W. O., Neurath, H., and Walsh, K. A., 1964, The reaction of carboxypeptidase A with hippuryl;-DL-b-phenyl lactate, Biochemistry 3: 1897.PubMedGoogle Scholar
  182. MacDonald, S. M., Schleimer, R. P., Kagey-Sobotka, A., Gillis, S., and Lichtenstein, L. M., 1989, Recombinant IL-3 induces histamine release from human basophils, J. Immunol.142: 3527.PubMedGoogle Scholar
  183. MacGlashan, D. W., Jr., and Lichtenstein, L. M., 1986, Characteristics of human basophil sulfidopeptide leukotriene release: Releasability defined as the ability of the basophil to respond to dimeric crosslinks, J. Immunol.136: 2231.PubMedGoogle Scholar
  184. MacQueen, G., Marshall, J., Perdue, M., Siegal, S., and Bienenstock, J., 1989, Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease II, Science 243: 83.PubMedGoogle Scholar
  185. Malone, D. G., and Metcalfe, D. D., 1988, Demonstration and characterization of transient arthritis in rats following sensitization of synovial mast cells with antigen-specific IgE and parenteral challenge with specific antigen, Arthritis Rheum.31: 1063.PubMedGoogle Scholar
  186. Malone, D. G., Irani, A.-M., Schwartz, L. B., Barrett, K. E., and Metcalfe, D. D., 1986, Mast cell numbers and histamine levels in synovial fluids from patients with diverse arthritides, Arthritis Rheum.29: 956.PubMedGoogle Scholar
  187. Malone, D. G., Wilder, R. L., Saavedra-Delgado, A. M., and Metcalfe, D. D., 1987, Mast cell numbers in rheumatoid synovial tissues. Correlations with quantitative measures of lymphocyte infiltration and modulation by anti-inflammatory therapy, Arthritis Rheum.30: 130.PubMedGoogle Scholar
  188. Marquardt, D. L., and Wasserman, S. I., 1993, Anaphylaxis, in: Allergy: Principles and Practice, 4th ed. (E. Middleton, Jr., C. E. Reed, E. F. Ellis, N. F. Adkinson, Jr., J. W. Yunginger, and W. W. Busse, eds.), Mosby, St. Louis, pp. 1525–1536.Google Scholar
  189. Martin, T. R., Takeishi, T., Katz, H. R., Austen, K. F., Drazen, J. M., and Galli, S. J., 1993a, Mast cell activation enhances airway responsiveness to methacholine in the mouse, J. Clin. Invest.9: 1176.Google Scholar
  190. Martin, T. R., Ando, A., Takeishi, T., Katona, I. M., Drazen, J. M., and Galli, S. J., 1993b, Mast cells contribute to the changes in heart rate, but not hypotension or death associated with active anaphylaxis in mice, J. Immunol.151: 367.PubMedGoogle Scholar
  191. Matsuda, H., Kawakita, K., Kiso, Y., Nakano, T., and Kitamura, Y., 1989, Substance P induces granulocyte infiltration through degranulation of mast cells, J. Immunol.142: 927.PubMedGoogle Scholar
  192. Matsuda, H., Watanabe, N., Kiso, Y., Hirota, S., Ushio, H., Kannan, Y., Azuma, M., Koyama, H., and Kitamua, Y., 1990, Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice, J. Immunol.144: 259.PubMedGoogle Scholar
  193. Maximow, A., 1905, Uber die Zellformen des lockeren Bindegewebes, Arch. Mikrosk. Anat. Entwick- lungsmech.67: 680.Google Scholar
  194. Meininger, C. J., Yano, H., Rottapel, R., Bernstein, A., Zsebo, K. M., and Zetter, B. R., 1992, The c-kit receptor ligand functions as a mast cell chemoattractant, Blood 79: 958.PubMedGoogle Scholar
  195. Mekori, Y. A., Chang, J. C. C., Wershil, B. K., and Galli, S. J., 1987, Studies of the role of mast cells in contact sensitivity responses. Passive transfer of the reaction into mast cell-deficient mice locally reconstituted with cultured mast cells: Effect of reserpine on transfer of the reaction with DNP-specific cloned T cells, Cell. Immunol.109: 39.PubMedGoogle Scholar
  196. Mekori, Y. A., Oh, C. K., and Metcalfe, D. D., 1993, IL-3-dependent murine mast cells undergo apoptosis on removal of IL-3, J. Immunol.151: 3775.PubMedGoogle Scholar
  197. Metcalfe, D. D., Kaliner, M., and Donlon, M. A., 1981, The mast cell, CRC Crit. Rev. Immunol.2: 23.Google Scholar
  198. Metcalfe, D. D., Bland, C. E., and Wasserman, S. I., 1984, Biochemical and functional characterization of proteoglycans isolated from basophils of patients with chronic myelogenous leukemia, J. Immunol.132: 1943.PubMedGoogle Scholar
  199. Miadonna, A., Tedeschi, A., Arnoux, B., Sala, A., Zanussi, C., and Benveniste, J., 1989, Evidence of PAF- acether metabolic pathway activation in antigen challenge of upper respiratory airways, Am. Rev. Respir. Dis.140: 142.PubMedGoogle Scholar
  200. Miller, H. R. P., Huntley, J. F., Newlands, G. F. J., Mackellar, A., Irvine, J., Haig, D. M., MacDonald, A., Lammas, A. D., Wakelin, D., and Woodbury, R. G., 1989, Mast cell granule proteases in mouse and rat: A guide to mast cell heterogeneity and activation in the gastrointestinal tract, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 81–91.Google Scholar
  201. Mitchell, E. B., and Askenase, P. W., 1983, Basophils in human disease, Clin. Rev. Allergy 1: 427.PubMedGoogle Scholar
  202. Mitchell, E. B., Platts-Mills, T. A. E., Pereira, R. S., et al., 1983, Basophil and eosinophil deficiency in a patient with hypogammaglobulinemia associated with thymoma, in: Primary Immunodeficiency Diseases, Birth Defects, Vol. 19 (R. J. Wedgewood, F. S. Rosen, and N. W. Paul, eds.), Liss, New York, pp.331–357.Google Scholar
  203. Mitsui, H., Furitsu, T., Dvorak, A. M., Irani, A. M., Schwartz, L. B., Inagaki, N., Takei, M., Ishizaka, K., Zsebo, R. M., Gillis, S., et al., 1993, Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand, Proc. Natl. Acad. Sci. USA 90: 735.PubMedGoogle Scholar
  204. Moqbel, R., Hamid, Q., Ying, S., Barkans, J., Hartnell, A., Tsicopoulos, A., Wardlaw, A. J., and Kay, A. B., 1991, Expression of mRNA and immunoreactivity for the granulocyte-macrophage colony- stimulating factor in activated human eosinophils, J. Exp. Med.174: 749.PubMedGoogle Scholar
  205. Mosmann, T. R., Bond, M. W., Coffman, R. L., Ohara, J., and Paul, W. E., 1986, T-cell and mast cell lines respond to B-cell stimulatory factor-1, Proc. Natl. Acad. Sci. USA 83: 5654.PubMedGoogle Scholar
  206. Murakami, I. Ogawa, M., Amo, H., and Ota, K., 1969, Studies on kinetics of human leukocytes in vivo with 3H-thymidine autoradiography. II. Eosinophils and basophils, Nippon Ketsueki Gakkai Zasshi 32: 384.PubMedGoogle Scholar
  207. Naclerio, R. M., Proud, D., Togias, A. G., Adkinson, N. F. Jr., Meyers, D. A., Kagey-Sobotka, A., Plant, M., Norman, D. S., and Lichtenstein, L. M., 1985, Inflammatory mediators in late antigen-induced rhinitis, N. Engl. J. Med.313: 65.PubMedGoogle Scholar
  208. Nakajima, K., Hirai, K., Yamaguchi, M., Takaishi, T., Ohta, K., Morita, Y., and Ito, K., 1992, Stem cell factor has histamine releasing activity in rat connective tissue-type mast cells, Biochem. Biophys. Res. Commun.183: 1076.PubMedGoogle Scholar
  209. Nakano, T., Sonoda, T., Hayashi, C., Yamatodani, A., Kanayama, Y., Yamamura, T., Asai, H., Yonezawa, T., Kitamura, Y., and Galli, S. J., 1985, Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue-type and mucosal mast cells, J. Exp. Med.162: 1025.PubMedGoogle Scholar
  210. Nocka, K., Majunder, S., Chabot, B., Ray, P., Cervone, M., Bernstein, A., and Besmer, P., 1989, Expression of the c-kit protooncogene in known cellular targets of W mutations in normal and W mutant mice: Evidence for an impaired c-kit kinase in mutant mice, Genes Dev.3: 816.PubMedGoogle Scholar
  211. Nocka, K., Tan, J. C., Chiu, E., Chu, T. Y., Ray, P., Traktman, P., and Besmer, P., 1990a, Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W, EMBO J.9: 1805.PubMedGoogle Scholar
  212. Nocka, K., Buck, J., Levi, E., and Besmer, P., 1990b, Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors, EMBO J.9: 3287.PubMedGoogle Scholar
  213. Ogawa, M., Nakahata, T., Leary, A. G., Sterk, A. R., Ishizaka, K., and Ishizaka, T., 1983, Suspension culture of human mast cells/basophils from umbilical cord blood mononuclear cells, Proc. Natl. Acad. Sci. USA 80: 4494.PubMedGoogle Scholar
  214. Ohkawara, Y., Yamaguchi, K., Tanno, Y., Tamura, G., Ohtani, H., Nagura, H., Ohkuda, K., and Takishima, T., 1992, Human lung mast cells and pulmonary macrophages produce tumor necrosis factor-α in sensitized lung tissue after IgE receptor triggering, Am. J. Respir. Cell Mol. Biol.7: 385.PubMedGoogle Scholar
  215. Okada, Y., 1973, The mast cell in synovial membrane of patients with joint disease, Jpn. J. Orthop. Surg.47: 657.Google Scholar
  216. Oppenheim, J. J., Zachariae, C. O. C., Mukaida, N., and Matsushima, K., 1991, Properties of the novel proinflammatory supergene “intercrine” cytokine family, Annu. Rev. Immunol.9: 617.PubMedGoogle Scholar
  217. Osgood, E. E., 1937, Culture of human marrow: Length of life of the neutrophil, eosinophils, and basophils of normal blood as determined by comparative culture of blood and sternal marrow from healthy persons, J. Am. Med. Assoc.109: 933.Google Scholar
  218. Otsu, K., Nakano, T., and Kanakura, Y., 1987, Phenotypic changes of bone marrow-derived mast cells after intraperitoneal transfer into W/Wv mice that are genetically deficient in mast cells, J. Exp. Med.165: 615.PubMedGoogle Scholar
  219. Otsuka, H., Dolovich, J., Befus, A. D., Telizyn, S., Bienenstock, J., and Denburg, J. A., 1986, Basophilic cell progenitors, nasal, metachromatic cells, and peripheral blood basophils in ragweed allergic patients, J. Allergy Clin. Immunol.78: 365.PubMedGoogle Scholar
  220. Pearce, F. L., 1986, Functional differences between mast cells from various locations, in: Mast Cell Differentiation and Heterogeneity (A. D. Befus, J. Bienenstock, and J. A. Denburg, eds.), Raven Press, New York, pp. 215–222.Google Scholar
  221. Perdue, M. H., Masson, S., Wershil, B. K., and Galli, S. J., 1991, Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation, J. Clin. Invest.87: 687.PubMedGoogle Scholar
  222. Plaut, M., Pierce, H. J., Watson, C. J., Hanley-Hyde, J., Nordan, R. P., and Paul, W. E., 1989, Mast cell lines produce lymphokines in response to cross-linkage of Fc RI or to calcium ionophores, Nature 339: 64.PubMedGoogle Scholar
  223. Plaut, M., Kagey-Sobotka, A., Niv, Y., Pierce, J. H., and Paul, W. E., 1990, Regulation of mast cell lymphokine production, FASEB J.4: A1705 (abstract).Google Scholar
  224. Porter, J. F., and Mitchell, R. G. L., 1972, Distribution of histamine in human blood, Physiol. Rev.52: 361.PubMedGoogle Scholar
  225. Ramos, B. F., Qureshi, R., Olsen, K. M., and Jakschik, B. A., 1990, The importance of mast cells for the neutrophil influx in immune complex-induced peritonitis in mice, J. Immunol.145: 1868.PubMedGoogle Scholar
  226. Reddigari, S. R., Kuna, P., Miragliotta, G. F., Kornfield, D., Baeza, M. L., Castor, C. W., and Kaplan, A. P., 1992, Connective tissue-activating peptide-III and its derivative, neutrophil-activating peptide-2, release histamine from human basophils, J. Allergy Clin. Immunol.89: 666.PubMedGoogle Scholar
  227. Reed, N. D., 1989, Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 205–215.Google Scholar
  228. Renauld, J.-C., Goethals, A., Houssiau, D., Merz, H., Van Roost, E., and Van Snick, J., 1990, Human P40/ IL-9. Expression in activated DC4+ T cells, genomic organization, and comparison with the mouse gene, J. Immunol.144: 4235.PubMedGoogle Scholar
  229. Reynolds, D. S., Stevens, R. L., Lane, W. S., Carr, M. H., Austen, K. F., and Serafin, W. E., 1990, Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases, Proc. Natl. Acad. Sci. USA 87: 3230.PubMedGoogle Scholar
  230. Roberts, L J., II, Sweetman, B. J., Lewis, R. A., Austen, K. F., and Oates, J. A., 1980, Increased production of prostaglandin D2 in patients with systemic mastocytosis, N. Engl. J. Med.303: 1400.PubMedGoogle Scholar
  231. Robinson, D. S., Hamid, Q., Ying, S., Tsicopoulous, A., Barkans, J., Bentley, A. M., Corrigan, C., Durham, S. R., and Kay, A. B., 1992, Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma, N. Engl. J. Med.326: 298.PubMedGoogle Scholar
  232. Romagnani, S., 1991, Human TH1 and TH2 subsets: Doubt no more, Immunol. Today 12: 256.PubMedGoogle Scholar
  233. Ruoslahti, E., and Yamaguchi, Y., 1991, Proteoglycans as modulators of growth factor activities, Cell 64: 867.PubMedGoogle Scholar
  234. Salari, H., and Chan-Yeung, M., 1989, Interleukin-1 potentiates antigen-mediated arachidonic acid metabolite formation in mast cells, Clin. Exp. Allergy 19: 637.PubMedGoogle Scholar
  235. Schechter, N. M., Franki, J. E., Geesin, J. C., and Lazarus, G. S., 1983, Human skin chymotryptic proteinase. I. Isolation and relation to cathepsin G and rat mast cell protease, J. Biol. Chem.258: 2973.PubMedGoogle Scholar
  236. Schwartz, L. B., and Bradford, T. M., 1986, Regulation of tryptase from human lung mast cells by heparin stabilization of the active tetramer, J. Biol. Chem.261: 7372.PubMedGoogle Scholar
  237. Schwartz, L. B., and Huff, T., 1993, Biology of mast cells and basophils, in: Allergy: Principles and Practice, 4th ed. (E. Middleton, Jr., C. E. Reed. E. F. Ellis, N. F. Adkinson, Jr., J. W. Yunginger, and W. W. Busse, eds.), Mosby, St. Louis, pp. 135–168.Google Scholar
  238. Schwartz, L. B., Metcalfe, D. D., Miller, J. S., Earl, H., and Sullivan, T., 1987, Tryptase levels as an indicator of mast cell activation in systemic anaphylaxis and mastocytosis, N. Engl. J. Med.316: 1622.PubMedGoogle Scholar
  239. Schwartz, L. B., Yuninger, J. W., Miller, J., Bokhari, R., and Dull, D., 1989, Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis, J. Clin. Invest.83: 1551.PubMedGoogle Scholar
  240. Seder, R. A., Paul, W. E., Dvorak, A. M., Sharkis, S. J., Kagey-Sobotka, A., Niv, Y., Finkleman, F. D., Barbieri, S. A., Galli, S. J., and Plaut, M., 1991, Mouse splenic and bone marrow cell populations that express high-affinity Fc receptors and produce interleukin-4 are highly enriched in basophils, Proc. Natl. Acad. Sci. USA 88: 2835.PubMedGoogle Scholar
  241. Selye, A. M., 1965, The Mast Cells, Butterworths, London.Google Scholar
  242. Shohet, S. B., and Blum, S. F., 1968, Coincident basophil chronic myelogenous leukemia and pulmonary tuberculosis, Cancer 22: 173.PubMedGoogle Scholar
  243. Sonoda, S., Sonoda, T., Nakano, T., Kanayama, Y., Kanakura, Y., Asai, H., Yonezawa, T., and Kitamura, Y., 1986, Development of mucosal mast cells after injection of a single connective tissue-type mast cell in the stomach mucosa of genetically mast cell-deficient WAVv mice, J. Immunol.137: 1319.PubMedGoogle Scholar
  244. Soter, N. A., Lewis, R. A., Corey, E. J., and Austen, M. F., 1983, Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4 and LTB4) in human skin, J. Invest. Dermatol.80: 115.PubMedGoogle Scholar
  245. Stead, R. H., Tomioka, M., Quinonez, G., Simon, G. T., Felten, S. Y., and Bienenstock, J., 1987, Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves, Proc. Natl. Acad. Sci. USA 84: 2975.PubMedGoogle Scholar
  246. Stead, R. H., Dixon, M. F., Bramwell, N. H., Riddell, R. H., and Bienenstock, J., 1989a, Mast cells are closely apposed to nerves in the human gastrointestinal mucosa, Gastroenterology 97: 575.PubMedGoogle Scholar
  247. Stead, R. H., Perdue, M. H., Blennerhassett, M. G., Kakuta, Y., Sestini, P., and Bienenstock, J., 1989b, The innervention of mast cells, in: The Neuroendocrine-Immune Network (S. Freier, ed.), CRC Press, Boca Raton, FL, pp. 19–37.Google Scholar
  248. Steeves, E. B., and Allen, J. R., 1990, Basophils in skin reactions of mast cell-deficient mice infected with Dermacentor variabilis, Int. J. Parasitol.20: 655.PubMedGoogle Scholar
  249. Steffen, M., Abboud, M., Potter, G. K., Yung, Y. P., and Moore, M. A., 1989, Presence of tumour necrosis factor or a related factor in human basophil/mast cells, Immunology 66: 445.PubMedGoogle Scholar
  250. Stevens, R. L., Fox, C. C., Lichtenstein, L. M., and Austen, K. F., 1988, Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells, Proc. Natl. Acad. Sci. USA 85: 2284.PubMedGoogle Scholar
  251. Stimler-Gerard, N. P., and Galli, S. J., 1987, Mast cells are not required for anaphylatoxin-induced ileal smooth muscle contraction, J. Immunol.138: 1908.PubMedGoogle Scholar
  252. Subramanian, N., and Bray, M. A., 1987, Interleukin 1 releases histamine from human basophils and mast cells in vitro, J. Immunol.138: 271.PubMedGoogle Scholar
  253. Tadokoro, K., Stadler, B. M., and de Weck, A. L., 1983, Factor dependent in vitro growth of normal bone marrow derived basophil-like cells, J. Exp. Med.158: 857.PubMedGoogle Scholar
  254. Takeishi, T., Martin, T. R., Katona, I. M., Finkelman, F. D., and Galli, S. J., 1991, Differences in the expression of the cardiopulmonary alterations associated with anti-immunoglobulin E-induced or active anaphylaxis in mast cell-deficient and normal mice. Mast cells are not required for the cardiopulmonary changes associated with certain fatal anaphylactic responses, J. Clin. Invest.88: 598.PubMedGoogle Scholar
  255. Tantravahi, R. V., Stevens, R. L., Austen, K. F., and Weis, J. H., 1986, A single gene in mast cells encodes the core peptides of heparin and chondroitin sulfate proteoglycans, Proc. Natl. Acad. Sci. USA 83: 9207.PubMedGoogle Scholar
  256. Tharp, M. D., Kagey-Sobotka, A., Fox, C. C., Marone, G., Lichtenstein, L. M., and Sullivan, T. J., 1987, Function heterogeneity of human mast cells from different anatomical sites: In vitro responses to morphine sulfate, J. Allergy Clin. Immunol.79: 646.PubMedGoogle Scholar
  257. Thompson, H. L., Schulmann, E. S., and Metcalfe, D. D., 1988, Identification of chondroitin sulfate E in human lung mast cells, J. Immunol.140: 2708.PubMedGoogle Scholar
  258. Thompson-Snipes, L., Dhar, V., O’Garra, A., Moore, K., Bond, M., and Rennick, D., 1990, Cytokine synthesis inhibitory factor is a potent co-factor for mast cell growth, FASEB J.4: A1705 (abstract).Google Scholar
  259. Tracey, R., and Smith, H., 1978, An inherited anomaly of human eosinophils and basophils, Blood Cells 4: 291.PubMedGoogle Scholar
  260. Tsai, M., and Shih, L., Newlands, G. F. J., Takeishi, T., Langley, K. E., Zsebo, K. M., Miler, H. R., Geissler, E. N., and Galli, S. J., 1991a, The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry, and protease phenotype, J. Exp. Med.174: 125.PubMedGoogle Scholar
  261. Tsai, M., Takeishi, T., Thompson, H. L., Langley, K. E., Zsebo, K. M., Metcalfe, D. D., Geissler, E. N., and Galli, S. J., 1991b, Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor, Proc. Natl. Acad. Sci. USA 88: 6382.PubMedGoogle Scholar
  262. Tsai, M., Chen, R.-H., Tam, S.-Y., Blenis, J., and Galli, S. J., 1993, Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signalling through the c-kit receptor tyrosine kinase or Fc RI: Rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells, Eur. J. Immunol.23: 3286–3291.PubMedGoogle Scholar
  263. Tsuda, T., Wong, D. A., Dolovich, J., Bienenstock, J., and Denburg, J. A., 1991, Synergistic effects of nerve growth factor and granulocyte-macrophage colony-stimulating factor on human basophilic cell differentiation, Blood 77: 971.PubMedGoogle Scholar
  264. Tsuji, K., Nakahata, T., Takagi, M., Kobayashi, T., Ishiguro, A., Kikuchi, T., Naganuma, K., Koike, K., Miyajuma, A., Arai, K., et al., 1990, Effects of interleukin-3 and interleukin-4 on the development of “connective tissue-type” mast cells: Interleukin-3 supports their survival and interleukin-4 triggers and supports their proliferation synergistically with interleukin-3, Blood 75: 421.PubMedGoogle Scholar
  265. Urbina, C., Ortiz, C., and Hurtado, I., 1981, A new look at basophils in mice, Int. Arch. Allergy Appl. Immunol.66: 158.PubMedGoogle Scholar
  266. Valent, P., and Bettelheim, P., 1990, The human basophil, Crit. Rev. Oncol. Hematol.10: 327.PubMedGoogle Scholar
  267. Valent, P., Schmidt, G., Besemer, J., Mayer, P., Zenke, G., Liehl, E., Hinterberger, W., Lechner, K., Maurer, D., and Bettelheim, P., 1989a, Interleukin-3 is a differentiation factor for human basophils, Blood 73: 1763.PubMedGoogle Scholar
  268. Valent, P., Besemer, J., Muhm, M., Majdic, O., Lechner, K., and Bettelheim, P., 1989b, Interleukin-3 activates human blood basophils via high affinity binding sites, Proc. Natl. Acad. Sci. USA 86: 5542.PubMedGoogle Scholar
  269. Valent, P., Spanblochl, E., Sperr, W. R., Sillaber, C., Zsebo, K. M., Agis, H., Strobl, H., Geissler, K., Bettelheim, P., and Lechner, K., 1992, Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture, Blood 80: 2237.PubMedGoogle Scholar
  270. Valone, F. H., Boggs, J. M., and Goetzl, E. J., 1993, Lipid mediators of hypersensitivity and inflammation, in: Allergy: Principles and Practice, 4th ed. (E. Middleton, Jr., C. E. Reed, E. F. Ellis, N. F. Adkinson, Jr., J. W. Yunginger, and W. W. Busse, eds.), Mosby, St. Louis, pp. 302–319.Google Scholar
  271. van der Linden, P.-W. G., Hack, C. E., Poorman, J., Vivie-Kipp, Y. C., Struyvenberg, A., and van der Zwan, J. K., 1992, Inset-sting challenge in 138 patients: Relation between clinical severity of anaphylaxis and mast cell activation, J. Allergy Clin. Immunol.90: 110.PubMedGoogle Scholar
  272. Walsh, L. J., Trinchieri, G., Waldorf, H. A., Whitaker, D., and Murphy, G. F., 1991, Human dermal mast cells contain and release tumor necrosis factor α which induces endothelial leukocyte adhesion molecule-1, Proc. Natl. Acad. Sci. USA 88: 4220.PubMedGoogle Scholar
  273. Wang, B., Rieger, A., Kilgus, O., Ochiai, K., Maurer, D., Fodinger, D., Kinet, J.-P, and Stingl, G., 1992, Epidermal Langerhans’ cells from normal human skin bind monomelic IgE via Fc RI, J. Exp. Med.175: 1353.PubMedGoogle Scholar
  274. Ward, P. A., Dvorak, H. F., Cohen, S., Yoshida, T., Data, R., and Selvaggio, D., 1975, Chemotaxis of basophils by lymphocyte-dependent and lymphocyte-independent mechanisms, J. Immunol.4: 1523.Google Scholar
  275. Watanabe, N., Katakura, K., Kobayashi, A., et al., 1988, Protective immunity and eosinophilia in IgE- deficient SJA/9 mice infected with Nippostrongylus brasiliensis and Trinchinella spiralis, Proc. Natl. Acad. Sci. USA 85: 4460.PubMedGoogle Scholar
  276. Wegner, C. D., Gundel, R. H., Reilly, P., Haynes, N., Letts, L. G., and Rothlein, R., 1990, Intracellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma, Science 247: 456.PubMedGoogle Scholar
  277. Wegner, C. D., Gundel, R. H., Abraham, W. M., Schulman, E. S., Kontny, M. J., Lazer, E. S., Homon, C. A., Graham, A. G., Torcellini, C. A., Clarke, C. C., Jager, P., Wolyniec, W. W., Letts, L. G., and Farina, P. R., 1993, The role of 5-lipoxygenase products in preclinical models of asthma, J. Allergy Clin. Immunol.91: 917.PubMedGoogle Scholar
  278. Weller, P. F., Rand, T. H., Barrett, T., Elovic, A., Wong, D. T. W., and Finberg, R. W. 1993, Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1α expression, J. Immunol.150: 2554.PubMedGoogle Scholar
  279. Wenzel, S. E., Fowler, A. A., III, and Schwartz, L. B., 1988, Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma, Am. Rev. Respir. Dis.137: 1002.PubMedGoogle Scholar
  280. Wershil, B. K., and Galli, S. J., 1989, 125I-fibrin deposition of IgE-dependent gastric reactions in the mouse: The role of mast cells (MCs), FASEB J.3: A789 (abstract).Google Scholar
  281. Wershil, B. K., and Galli, S. J., 1992, An approach for analyzing the role of mast cells in immunotoxicologic processes and other biologic responses, in: Clinical Immunotoxicology (D. S. Newcombe, N. R. Rose, and J. C. Bloom, eds.), Raven Press, New York, pp. 49–82.Google Scholar
  282. Wershil, B. K., Mekori, Y. A., Murakami, T., and Galli, S. J., 1987, 125I-fibrin deposition in IgE-dependent immediate hypersensitivity reactions in mouse skin. Demonstration of the role of mast cells using genetically mast cell-deficient mice locally reconstituted with cultured mast cells, J. Immunol. 139: 2605.PubMedGoogle Scholar
  283. Wershil, B. K., Murakami, T., and Galli, S. J., 1988, Mast cell-dependent amplification of an immunologically nonspecific inflammatory response. Mast cells are required for the full expression of cutaneous acute inflammation induced by phorbol 12-myristate 13-acetate, J. Immunol.140: 2356.PubMedGoogle Scholar
  284. Wershil, B. K., Wang, Z.-S., Gordon, J. R., and Galli, S. J., 1991a, Recruitment of neutrophils during IgE- dependent cutaneous late phase responses in the mouse is mast cell dependent: Partial inhibition of the reaction with antiserum against tumor necrosis factor-alpha, J. Clin. Invest.87: 446.PubMedGoogle Scholar
  285. Wershil, B. K., Wang, Z.-S., and Galli, S. J., 1991b, Evidence of mast cell-dependent neutrophil infiltration during IgE-dependent gastric inflammation in the mouse: Does this represent a gastric late phase reaction (LRP)? Gastroenterology 100: A625 (abstract).Google Scholar
  286. Wershil, B. K., Tsai, M., Geissler, E. N., Zsebo, K. M., and Galli, S. J., 1992, The rat c-kit ligand, stem cell factor, induces c-kit receptor-dependent mouse mast cell activation in vivo. Evidence that signaling through the c-kit receptor can induce expression of cellular function, J. Exp. Med.175: 245.PubMedGoogle Scholar
  287. Wershil, B. K., Turck, C. W., Sreedharan, S. P., Yang, J., An, S., Galli, S. J., and Goetzl, E. J., 1993, Variants of vasoactive intestinal peptide in mouse mast cells and rat basophilic leukemia cells, Cell Immunol.151: 369.PubMedGoogle Scholar
  288. Wershil, B. K., Lavigne, J. A., and Galli, S. J., 1994, Stem cell factor (SCF) can influence neuroimmune interactions: Bone marrow-derived mast cells (BMDMC) maintained in SCF acquire the ability to release histamine and tumor necrosis factor-alpha (TNF-α) in response to substance P (SP), FASEB J.8: A742.Google Scholar
  289. Williams, D. E., de Vries, P., Namen, A. E., Widmer, M. B., and Lyman, S. D., 1992, The Steel factor, Dev. Biol.151: 368.PubMedGoogle Scholar
  290. Woodnar-Filipowicz, A., and Moroni, C., 1990, Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions, Proc. Natl. Acad. Sci. USA 87: 777.Google Scholar
  291. Wodnar-Filipowicz, A., Heusser, C. H., and Moroni, C., 1989, Production of the haemopoietic growth factors GM-CSF and interleukin-3 by mast cells in response to IgE receptor-mediated activation, Nature 339: 150.PubMedGoogle Scholar
  292. Wolpe, S. D., and Cerami, A., 1989, Macrophage inflammatory proteins 1 and 2: Members of a novel superfamily of cytokines, FASEB J.3: 2565.PubMedGoogle Scholar
  293. Wong, D. T. W., Weller, P. F., Galli, S. J., Elovic, A., Rand, T. H., Gallagher, G. T., Chiang, T., Chou, M. Y., Matossian, K., McBride, J., and Todd, R., 1990, Human eosinophils express transforming growth factor-alpha, J. Exp. Med.172: 673.PubMedGoogle Scholar
  294. Wong, D. T. W., Elovic, A., Matossian, K., Nagura, N., McBride, J., Chou, M. Y., Gordon, J. R., Rand, T. H., Galli, S. J., and Weller, P. F., 1991, Eosinophils from patients with blood eosinophilia express transforming growth factor ß1, Blood 78: 2702.PubMedGoogle Scholar
  295. Woodbury, R. G., and Neurath, H., 1980, Structure, specificity, and localization of the serine proteases of connective tissue, FEBS Lett.114: 189.PubMedGoogle Scholar
  296. Woodbury, R. G., Everitt, M., Sanada, Y., Katanuma, N., Lagunoff, D., and Neurath, H., 1978, A major serine protease in skeletal muscle. Evidence for its mast cell origin, Proc. Natl. Acad. Sci. USA 75: 5311.PubMedGoogle Scholar
  297. Woodbury, R. G., Le Trong, H., Cole, K., Neurath, H., and Miller, H. R. P., 1989, Rat mast cell proteases, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 71–79.Google Scholar
  298. Woolley, D. E., Bartholomew, J. S., Taylor, D. J., and Evanson, J. M., 1989, Mast cells and rheumatoid arthritis, in: Mast Cell and Basophil Differentiation and Function in Health and Disease (S. J. Galli and K. F. Austen, eds.), Raven Press, New York, pp. 183–193.Google Scholar
  299. Yamatodani, A., Maeyama, K., Watanabe, T., Wada, H., and Kitamura, Y., 1982, Tissue distribution of histamine in a mutant mouse deficient in mast cells: Clear evidence for the presence of non-mast cell histamine, Biochem. Pharmacol.31: 305.PubMedGoogle Scholar
  300. Yano, H., Wershil, B. K., Arizono, N., and Galli, S. J., 1989, Substance P-induced augmentation of cutaneous vascular permeability and granulocyte infiltration in mice is mast cell dependent, J. Clin. Invest.84: 1276.PubMedGoogle Scholar
  301. Young, J. D.-E., Liu, C.-C., Butler, G., Cohn, Z. A., and Galli, S. J., 1987, Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor, Proc. Natl. Acad. Sci. USA 84: 9175.PubMedGoogle Scholar
  302. Zsebo, K. M., Williams, D. A., Geissler, E. N., Broudy, V. C., Martin, F. H., Atkins, H. L., Hsu, R. Y., Birkett, N. C., Okino, K. H., Murdock, D. C., et al., 1990, Stem cell factor (SCF) is encoded at the S1 locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor, Cell 63:213.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • John J. Costa
    • 1
    • 2
  • Stephen J. Galli
    • 2
    • 3
  1. 1.Departments of Pathology and MedicineBeth Israel Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Division of Experimental PathologyBeth Israel HospitalBostonUSA
  3. 3.Department of PathologyBeth Israel Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations