Inositol Pentakis- and Hexakisphosphate Metabolism Adds Versatility to the Actions of Inositol Polyphosphates Novel Effects on Ion Channels and Protein Traffic

  • Stephen B. Shears
Part of the Subcellular Biochemistry book series (SCBI, volume 26)


The discovery of receptor-dependent regulation of inositol-1,4,5-trisphosphate [Ins(1,4,5)P 3*]-mediated cellular Ca2+ mobilization was a pivotal breakthrough in the field of signal transduction (Berridge and Irvine, 1989). One consequence of this development has been the unraveling of a complex metabolic network of inositol phosphates emanating from Ins(1,4,5)P 3 (Figure 1). As these studies progressed, it emerged that Ins(1,3,4,5,6)P 5 and InsP 6 usually comprise the bulk of the mammalian cell’s inositol polyphosphate content (for reviews, see Berridge and Irvine, 1989; Shears, 1992). At first, it was generally believed that Ins(1,3,4,5,6)P 5 and lnsP 6 were somewhat metabolically inert compounds (e.g., Michell et al., 1988), and their existence in animal cells caused little excitement. The renaissance of interest in the functions of these metabolites (Hughes and Michell, 1993; Menniti et al., 1993b) owes much to the discovery (Stephens et al., 1993; Menniti et al., 1993a) that the cellular pools of these polyphosphates turn over rapidly in animal cells. The purpose of this chapter is to update these recent metabolic developments and also to evaluate the growing body of evidence suggesting that there are important roles in cell biology for Ins(1,3,4,5,6)P 5, InsP 6, and their metabolites. An underlying theme is the considerable versatility of these inositol phosphates in the control of diverse cellular activities.


Phytic Acid Inositol Phosphate Inositol Polyphosphates Substrate Cycle Inositol Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, M., Hughes, P. J., Craxton, A., Gigg, R., Desai, T., Marecek, J. F., Prestwich, G. D., and Shears, S. B. 1992, Purification and characterization of inositol-1,3,4-trisphosphate 5/6-kinase from rat liver using an inositol hexakisphosphate affinity column, J. Biol. Chem. 267:22340–22345.PubMedGoogle Scholar
  2. Ali, N., Craxton, A., and Shears, S. B., 1993, Hepatic Ins(1,3,4,5)P 4 3-phosphatase is compartmentalized inside endoplasmic reticulum, J. Biol. Chem. 268:6161–6167.PubMedGoogle Scholar
  3. Ali, N., Duden, R., Bembenek, M. E., and Shears, S. B., 1995a, The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae, Biochem. J. 310:279–284.PubMedGoogle Scholar
  4. Ali, N., Craxton, A., Sumner, M., and Shears, S. B., 1995b, Effects of aluminium upon the hepatic inositol polyphosphate phosphatase, Biochem. J. 305:557–561.PubMedGoogle Scholar
  5. Arnone, A., and Perutz, M. F., 1974, Structure of inositol hexaphosphate-human deoxyhaemoglobin complex, Nature 249:34–36.PubMedCrossRefGoogle Scholar
  6. Balla, T., Guillemette, G., Baukal, A. J., and Catt, K. J., 1987, Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells, J. Biol. Chem. 242:9952–9955.Google Scholar
  7. Balla, T., Baukal, A. J., Hunyady, L., and Catt, K. J., 1989, Agonist-induced regulation of inositol tetrakisphosphate isomers and inositol pentakisphosphate in adrenal gloerulosa cells, J. Biol. Chem. 264:13605–13611.PubMedGoogle Scholar
  8. Balla, T., Sim, S. S., Baukal, A. J., Rhee, S. G., and Catt, K. J., 1994, Inositol polyphosphates are not increase by overexpression of Ins(1,4,5)P 3 3-kinase but show cell-cycle dependent changes in growth factor-stimulated fibroblasts, Mol. Biol. Cell. 5:17–27.PubMedGoogle Scholar
  9. Barker, C. J., Wong, N. S., Maccallum, S. M., Hunt, P. A., Michell, R. H., and Kirk, C. J., 1992, The interrelationships of the inositol phosphates formed in vasopressin-stimulated WRK-1 mammary tumour cells, Biochem. J. 286:469–474.PubMedGoogle Scholar
  10. Barker, C. J., French, P. J., Moore, A. J., Nilsson, T., Berggren, P.-O., Bunce, C. M., Kirk, C. J., and Michell, R. H., 1995, Inositol 1,2,3-trisphosphate and inositol 1,2-and/or 2,3-bisphosphate are normal constituents of mammalian cells, Biochem. J. 306:557–564.PubMedGoogle Scholar
  11. Barraco, R. A., Phillis, J. W., and Simpson, L. L., 1989, Cardiorespiratory effects of inositol hexakisphosphate following microinjections into the nucleus tractus solitarii, Eur. J. Pharmacol. 173:75–84.PubMedCrossRefGoogle Scholar
  12. Beck, K. A., and Keen, J. H., 1991, Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein AP-2, J. Biol. Chem. 266:4442–4447.PubMedGoogle Scholar
  13. Bennett, M. K., and Scheller, R. H., 1994, A molecular description of synaptic vesicle trafficking, Annu. Rev. Biochem. 63:63–100.PubMedCrossRefGoogle Scholar
  14. Berridge, M. J., and Irvine, R. F. 1989, Inositol phosphates and cell signalling, Nature 341:197–205.PubMedCrossRefGoogle Scholar
  15. Biswas, S., Maity, I. B., Chakrabarti, S., and Biswas, B. B., 1978, Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus, Arch. Biochem. Biophys. 185:557–566.PubMedCrossRefGoogle Scholar
  16. Brooks, P. A., and Spyer, K. M., 1990, Investigation of inositol hexakisphosphate actions in rat nucleus tractus solitarium in vitro, Neurosci. Lett. 105:120–124.CrossRefGoogle Scholar
  17. Bunce, C. M., French, P. J., Allen, P., Mountford, J. C., Moor, B., Greaves, M. F., Michell, R. H., and Brown, G., 1993, Comparison of the levels of inositol metabolites in transformed haem-opoietic cells and their normal counterparts, Biochem. J. 289:667–673.PubMedGoogle Scholar
  18. Carpenter, D., Hanley, M. R., Hawkins, P. T., Jackson, T. R., Stephens, L. R., and Vallejo, M., 1989, The metabolism and functions of inositol pentakisphosphate and inositol hexakisphosphate, Biochem. Soc. Trans. 17:3–5.PubMedGoogle Scholar
  19. Cifuentes, M. E., Honkanen, L., and Rebecchi, M. J., 1993, Proteolytic fragments of phosphoinositide-specific phospholipase C-δ1. Catalytic and membrane binding properties, J. Biol. Chem. 268:11586–11593.PubMedGoogle Scholar
  20. Challiss, R.A.J., Willcocks, A. L., Mulloy, B., Potter, B.V.L., and Nahorski, S. R., 1991, Characterization of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate binding sites in rat cerebellum, Biochem. J. 274:861–867.PubMedGoogle Scholar
  21. Chan, H. C., Kaetzell, M. A., Gotter, A. L., Dedman, J. R., and Nelson, D. J., 1994, Annexin IV inhibits calmodulin-dependent protein kinase II-activated chloride conductance. A novel mechanism for ion channel regulation, J. Biol. Chem. 269:32462–32468.Google Scholar
  22. Chattaway, J. A., Drobak, B. K., Watkins, P.A.C., Dawson, A. P., Letcher, A. J., Stephens, L. R., and Irvine R. F., 1992, An inositol 1,4,5-trisphosphate 6-kinase in pea roots, Planta 187:542–545.CrossRefGoogle Scholar
  23. Cifuentes, M. E., Delaney, T., and Rebecchi, M. J., 1994, D-myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-δ1 to bilayer membranes, J. Biol. Chem. 269:1945–1948.PubMedGoogle Scholar
  24. Cornish-Bowden, A., 1991, Failure of channelling to maintain low concentrations of metabolic intermediates, Eur. J. Biochem. 195:103–108.PubMedCrossRefGoogle Scholar
  25. Craxton, A., Erneux, C., and Shears, S. B., 1994, Inositol 1,4,5,6-tetrakisphosphate is phosphory-lated in rat liver by a 3-kinase that is distinct from inositol 1,4,5-trisphosphate 3-kinase, J. Biol. Chem. 269:4337–4342.PubMedGoogle Scholar
  26. Craxton, A., Ali, N., and Shears, S. B., 1995, Comparison of the activities of a multiple inositol polyphosphate phosphatase obtained from several sources: A search for heterogeneity in this enzyme, Biochem. J. 305:557–561.PubMedGoogle Scholar
  27. Cullen, P. J., Irvine, R. F., and Dawson, A. P., 1990, Synergistic control of Ca2+ mobilization in permeabilized mouse L1210 lymphoma cells by inositol 2,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate, Biochem. J. 271:549–553.PubMedGoogle Scholar
  28. Cullen, P. J., Chung, S.-K., Chang, Y.-T., Dawson, A. P., and Irvine, R. F., 1995a, Specificity of the purified inositol (1,3,4,5) tetrakisphosphate-binding protein from porcine platelets, FEBS Lett. 358:240–242.PubMedCrossRefGoogle Scholar
  29. Cullen, P. J., Dawson, A. P., and Irvine, R. F., 1995b, Purification and characterization of an inositol 1,3,4,5-tetrakisphosphate binding protein from pig platelets: Possible identification of a novel non-neuronal Ins(1,3,4,5)P 4 receptor, Biochem. J. 305:139–143.PubMedGoogle Scholar
  30. Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. 1995c, Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family, Nature 376:527–530.PubMedCrossRefGoogle Scholar
  31. da Silva, C. P., Emmrich, F., and Guse, A. H., 1994, Adriamycin inhibits 1,4,5-trisphosphate 3-kinase activity in vitro and blocks formation of inositol 1,3,4,5-tetrakisphosphate in stimulated jurkat T-lymphocytes. Does inositol 1,3,4,5-tetrakisphosphate play a role in Ca2+ entry?, J. Biol. Chem. 269:12521–12526.PubMedGoogle Scholar
  32. DeLisle, S., Radenberg, T., Wintermantel, M. R., Tietz, C., Parys, J. B., Pittet, D., Welsh, M. J., and Mayr, G., 1994, Second messenger specificity of the novel trisphosphate receptor: reappraisal based on novel inositol phosphates, Am. J. Physiol. 266:C429–C436.PubMedGoogle Scholar
  33. Dharmsathaphorn, K., Cohn, J., and Beuerlein, G., 1989, Multiple calcium-mediated effector mechanisms regulate chloride secretory responses in T84 cells, Am. J. Physiol. 256:C1224–C1230.PubMedGoogle Scholar
  34. Dingwell, C., and Laskey, R., 1992, The nuclear membrane, Science 258:942–947.CrossRefGoogle Scholar
  35. Donié, F., Hülser, E., and Reiser, G., 1990, High-affinity inositol 1,3,4,5-tetrakisphosphate receptor from cerebellum: Solubilization, partila purification and characterization, FEBS Lett. 268:194–198.PubMedCrossRefGoogle Scholar
  36. Doughney, C., McPherson, M. A., and Dormer, R. L., 1988, Metabolism of inositol 1,3,4,5-tetrakisphosphate by human erythrocyte membranes. A new mechanism for the formation of inositol 1,4,5-trisphosphate, Biochem. J. 251:927–929.PubMedGoogle Scholar
  37. Downes, C. P., and MacPhee, C. H., 1990, myo-inositol metabolites as cellular signals, Eur. J Biochem. 195:1–18.CrossRefGoogle Scholar
  38. Drayer, A. L. Van Der Kaay, J., Mayr, G. W., and Van Haastert, P.J.M., 1994, Role of phospho-lipase C in Dictyostelium: Formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity, EMBO J., 13:1601–1609.PubMedGoogle Scholar
  39. Estevez, F., Pulford, D., Stark, M.J.R., Carter, A. N., and Downes, C. P., 1994, Inositol trisphosphate metabolism in Saccharomyces cerevisiae: Identification, purification and properties of inositol 1,4,5-trisphosphate 6-kinase, Biochem. J. 302:709–716.PubMedGoogle Scholar
  40. Estrada-Garcia, T., Craxton, A., Kirk, C. J., and Michell, R. H., 1991, A salt-activated inositol 1,3,4,5-tetrakisphosphate 3-phosphatase at the inner surface of the human erythrocyte membrane, Proc. R. Soc. Lond. [Biol] 244:63–68.CrossRefGoogle Scholar
  41. Europe-Finner, G. N., Gammon, B., Wood, C. A., and Newell, P. C., 1989, Inositol tris-and polyphosphate formation during Chemotaxis of Dictyostelium, J. Cell. Sci. 93:585–592.PubMedGoogle Scholar
  42. Falck, J. R., Reddy, K. K., Ye, J., Saady, M., Mioskowski, C., Shears, S. B., Tan, Z., and Safrany, S., 1995, Synthesis and structure of cellular mediators: inositol polyphosphate diphosphates, JACS, submitted.Google Scholar
  43. Fleischer, B., Zie, J., Mayrleitner, M., Shears, S. B., Palmer, D. J., and Fleischer, S., 1994, Golgi coatomer binds, and forms K+-selective channels gated by, inositol polyphosphates, J. Biol. Chem. 269:17826–17832.PubMedGoogle Scholar
  44. French, P. J., Bunce, C. M., Stephens, L. R., Lord, J. M., McConnell, F. M., Brown, G., Creba, J. A., and Michell, R. H., 1991, Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes, Proc. R. Soc. Lond. [Biol.] 245:193–201.CrossRefGoogle Scholar
  45. Freund, W.-D., Mayr, G. W., Tietz, C., and Schultz, J. E., 1992, Metabolism of inositol phosphates in the protozoan Paramecium. Characterization of a novel inositol-hexakisphosphate-dephosphorylating enzyme, Eur. J. Biochem. 207:359–367.PubMedCrossRefGoogle Scholar
  46. Fukuda, M., Aruga, J., Niinobe, M., Aimoto, S., and Mikoshiba, K., 1994, Inositol-1,3,4,5-tetrakisphosphate binding to the C2B domain of IP4BP/synaptotagmin II, J. Biol. Chem. 269:29206–29211.PubMedGoogle Scholar
  47. Garland, A. M., Grady, E. F., Payan, D. G., Vigna, S. R., and Bunnett, N. B., 1994, Agonist-induced internalization of the substance P (NK1) receptor expressed in epithelial cells, Biochem. J. 303:177–186.PubMedGoogle Scholar
  48. Gawler, D. J., Potter, B.V.L., Gigg, R., and Nahorski, S. R., 1991, Interactions between inositol tris-and tetrakis-phosphates. Effects on intracellular Ca2+ mobilization in SH-SY5Y cells, Biochem. J. 276:163–167.PubMedGoogle Scholar
  49. Gibson, D. M., and Ullah, A.B.J., 1990, Phytases and their action on phytic acid, in Inositol Metabolism in Plants (D. J. Moiré, W. F. Boss, and F. A. Loewus, eds.), pp. 77–92, Wiley-Liss, Inc., New York.Google Scholar
  50. Glennon, M. C., and Shears, S. B., 1993, Turnover of inositol pentakisphosphates, inositol hexa-kisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes, Biochem. J. 293:583–590.PubMedGoogle Scholar
  51. Graf, E., Empson, K. L., and Eaton, J. W., 1987, Phytic acid. A natural antioxidant, J. Biol. Chem. 262:11647–11650.PubMedGoogle Scholar
  52. Gurevich, V. V., Richardson, R. M., Kim, C. M., Hosey, M. M., and Benovic, J. L., 1993, Binding of wild-type and chimeric arrestins to the m2 muscarinic cholinergic receptor, J. Biol. Chem. 268:16879–16882.PubMedGoogle Scholar
  53. Guse, A. H., and Emmrich, F., 1991, T-cell receptor-mediated metabolism of inositol polyphosphates in Jurkat T-lymphocytes. Identification of a D=myo-inositol 1,2,3,4,6-pentakisphosphate 2-phosphomonoesterase activity, a D-myo-inositol 1,3,4,5,6-pentakisphosphate 1/3-phosphate activity and a D/L-myo-inositol 1,2,4,5,6-pentakisphosphate 1/3-kinase activity, J. Biol. Chem. 266:24498–24502.PubMedGoogle Scholar
  54. Guse, A. H., Gercken, G., Boysen, H., Schwarz, J. R., and Meyerhof, W., 1991, Inositol tetra-kisphosphates as second messenegers induce Ca2+-dependent chloride currents in Xenopus laevis oocytes, Biochem. Biophys, Res. Commun. 179:641–647.CrossRefGoogle Scholar
  55. Guse, A. H., Greiner, E., Emmrich, F., and Brand, K., 1993, Mass changes of inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate during cell cycle progression in rat thymocytes, J. Biol. Chem. 268:7129–7133.PubMedGoogle Scholar
  56. Hansen, C. A., Von Dahl, S., Huddell, B., and Williamson, J. R., 1988, Characterization of inositol 1,3,4-trisphosphate phosphorylation in rat liver, FEBS Lett. 236:53–56.PubMedCrossRefGoogle Scholar
  57. Harlen, J. E., Hajduk, P. J., Yoon, H. S., and Fesik, S. W., 1991, Plekstrin homology domains bind to phosphatidylinositol 4,5-bisphosphate, Nature 371:168–170.CrossRefGoogle Scholar
  58. Hashii, M., Hirata, M., Ozaki, S., Nozawa, Y., and Higashida, H., 1994a, Ca2+ influx evoked by inositol-3,4,5,6-tetrakisphosphate in ras-transformed NIH/3T3 fibroblasts, FEBS Lett. 340:276–280.PubMedCrossRefGoogle Scholar
  59. Hashii, M., Hirata, M., Ozaki, S., Nozawa, Y., and Higashida, H., 1994b, Ca2+ influx gated by inositol-3,4,5,6-tetrakisphosphate in NIH/3T3 fibroblasts, Biochem. Biophys, Res. Commun. 200:1300–1306.CrossRefGoogle Scholar
  60. Häussinger D., and Lang, F., 1992, Cell volume and hormone action, Trends. Pharmacol. Sci. 13:371–373.PubMedCrossRefGoogle Scholar
  61. Hawkins, P. T., Poyner, D. R., Jackson, T. R., Letcher, A. J., Lander, D. A., and Irvien, R. F., 1993, Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hexakisphosphate, Biochem. J. 294:929–934.PubMedGoogle Scholar
  62. Heslop, J. P., Irvine, R. F., Tashjian, A. H., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4C1 cells, J. Biol. 199:395–402.Google Scholar
  63. Hildebrandt, J.-P., and Shuttleworth, T. J., 1992, Calcium-sensitivity of inositol 1,4,5-trisphosphate metabolism in exocrine cells from the avian salt gland, Biochem. J. 282:703–710.PubMedGoogle Scholar
  64. Horn, R., and Marty, A., 1988, Muscarinic activation of ionic currents measured by a new whole-cell recording method, J. Gen. Physiol. 92:145–159.PubMedCrossRefGoogle Scholar
  65. Hughes, A. R., and Putney, J. W., Jr., 1989, Source of 3H-labeled inositol bis-and monophosphates in agonist-stimulated rat parotid acinar cells, J. Biol. Chem. 264:9400–9407.PubMedGoogle Scholar
  66. Hughes, P. J., and Michell, R. H., 1993, Novel inositol containing phospholipids and phosphates: Their synthesis and possible new roles in cellular signalling, Curr. Opin. Neurobiol. 3:383–400.PubMedCrossRefGoogle Scholar
  67. Hughes, P. J., Hughes, A. R., Putney, J. W., Jr., and Shears, S. B., 1989, The regulation of the phosphorylation of inositol 1,3,4-trisphosphate in cell-free preparations and its relevance to the formation of inositol 1,3,4,6-tetrakisphosphate in agonist-stimulated rat parotid cells, J. Biol. Chem. 264:19871–19878.PubMedGoogle Scholar
  68. Hughes, P. J., Kirk, C. J., and Michell, R. H., 1994, Inhibition of porcine brain inositol 1,3,4-trisphosphate kinase by inositol polyphosphates, other inositol phosphates, polyanions and polycations, Biochim. Biophys. Acta 1223:57–70.PubMedCrossRefGoogle Scholar
  69. Irvine, R. F., 1988, Inositol phosphates: Proliferation, metabolism and function, Phil. Trans. R. Soc. London. [Biol] 320:281–298.CrossRefGoogle Scholar
  70. Irvine, R. F., 1991, Inositol tetrakisphosphate as a second messenger: Confusions, contradictions and a potential resolution, BioEssays 13:419–427.PubMedCrossRefGoogle Scholar
  71. Irvine, R. F., 1992, Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv. Second Messenger Phosphoprotein Res. 26:161–185.PubMedGoogle Scholar
  72. Irvine, R. F., Änggård, E. E., Letcher, A. J., and Downes, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid acinar cells, Biochem. J. 229:505–511.PubMedGoogle Scholar
  73. Irvine, R. F., Letcher, A. J., Stephens, L. R., and Musgrave, A., 1992, Inositol polyphosphate metabolism and inositol lipids in a green alga, Chlamydomonas eugametos, Biochem. J. 281:261–266.PubMedGoogle Scholar
  74. Isaacks, R. E., and Harkness, D. R., 1980, Erythrocyte organic phosphates and hemoglobin function in birds, reptiles and fishes, Am. Zool. 20:115–129.Google Scholar
  75. Ji, H., Sandberg, K., Baukal, A. J., and Catt, K. J., 1989. Metabolism of inositol pentakisphosphate to inositol hexakisphosphate in Xenopus laevis oocytes, J. Biol. Chem. 264:20185–20188.PubMedGoogle Scholar
  76. Johnson, L. F., and Tate, M. E., 1969, Structure of “phytic acids,” Can. J. Chem. 47:63–73.CrossRefGoogle Scholar
  77. Kachintorn, U., Vongkovit, P., Vajanaphanich, M., Dinh, S., Barrett, K. E., and Dharmsathaphorn, K., 1992, Dual effects of a phorbol ester on calcium-dependent chloride secretion by T84 epithelial cells, Am. J. Physiol. 262:C15–C22.PubMedGoogle Scholar
  78. Kachintorn, U., Vajanaphanich, M., Barrett, K. E., and Traynor-Kaplan, A. E., 1993, Elevation of inositol tetrakisphosphate parallels inhibition of Ca2+-dependent Cl-secretion in T84 cells, Am. J. Physiol. 264:C671–C676.PubMedGoogle Scholar
  79. Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y., and Hirata, M., 1995, New Ins(1,4,6)P 3-binding protein similar to phospholipase C-δ1, Biochem. J., in press.Google Scholar
  80. Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S., and Hirata, M., 1992, Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol, J. Biol. Chem. 267:6518–6525.PubMedGoogle Scholar
  81. King, W. G., Downes, C. P., Prestwich, G. D., and Rittenhouse, S. E., 1990, Ca2+-stimulatable and protein kinase C-inhibitable accumulation of inositol 1,3,4,6-tetrakisphosphate in human platelets, Biochem. J. 270: 125–131.PubMedGoogle Scholar
  82. Koppler, P., Matter, N., and Malviya, A. N., 1993, Evidence for stereospecific inositol 1,3,4,5-tetrakisphosphate binding sites on rat liver nucleii. Delineating inositol 1,3,4,5-tetrakis-phosphate interaction in nuclear calcium signalling processes, J. Biol. Chem. 268:26248–26252.PubMedGoogle Scholar
  83. Korn, S. J., Bolden, A., and Horn, R., 1991, Control of action potentials and Ca2+ influx by the Ca2+-dependent chloride current in mouse pituitary cells, J. Physiol. 439:423–437.PubMedGoogle Scholar
  84. Lapan, E. A., 1975, Magnesium inositol hexaphosphate deposits in mesozoan dispersal larvae, Exp. Cell. Res. 94:277–282.PubMedCrossRefGoogle Scholar
  85. Lim, P. E., and Tate, M. E., 1973, The phytases. II. Properties of phytase fractions F1 and F2 from wheat bran and the myo-inositol phosphates produced by fraction F2. Biochim. Biophys. Acta 302:316–328.PubMedGoogle Scholar
  86. Llinás, R., Sugimori, M., Lang, E. J., Morita, M., Fukuda, M., Niinobe, M., and Mikoshiba, K., 1994, The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: A squid giant synapse study, Proc. Natl. Acad. Sci. U.S.A. 91:12990–12993.PubMedCrossRefGoogle Scholar
  87. Lu, P.-J., Gou, D.-M., Shieh, W.-R., and Chen, C.-S., 1994, Molecular interactions of endogenous D-myo-inositol phosphates with the intracellular D-myo-Inositol 1,4,5-triphosphate recognition site, Biochem. J. 33:11586–11597.CrossRefGoogle Scholar
  88. Mantyh, P. W., Allen, C. J., Ghilardi, J. R., Rogers, S. D., Mantyh, C. R., Liu, H., Basbaum, A. I., Vigna, S. R., and Maggio, J. E., 1995, Rapid endocytosis of a G protein coupled receptor: Substance P evoked internalization of its receptor in the rat striatum in vivo, Proc. Natl. Acad. Sci. U.S.A. 92:2622–2626.PubMedCrossRefGoogle Scholar
  89. Martin, J. B., Bakker-Grunwald, T., and Klein, G., 1993, 31P-NMR analysis of Entamoeba histolytica. Occurrence of high amounts of two inositol phosphates, Eur. J. Biochem. 214:711–718.PubMedCrossRefGoogle Scholar
  90. Marty, A., and Zimmerberg, J., 1989, Diffusion into the patch-clamp recording pipette of a factor necessary for the muscarinic current response, Cell. Signal. 1:259–268.PubMedCrossRefGoogle Scholar
  91. Mattingly, R. R., Stephens, L. R., Irvine, R. F., and Garrison, J. C., 1991, Effects of transformation with the v-src oncogene on inositol phosphate metabolism in rat-1 fibroblasts: D-myo-Inositol 1,4,5,6-tetrakisphosphate is increased in v-src-transformed rat-1 fibroblasts and can be synthesized from D-myo-inositol 1,3,4-trisphosphate in cytosolic extracts, J. Biol. Chem. 266:15144–15153.PubMedGoogle Scholar
  92. Mayr, G. W., 1988, A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens, Biochem. J. 254:585–591.PubMedGoogle Scholar
  93. Mayr, G. W., and Dietrich, W., 1987, The only inositol tetrakisphosphate in avian erythrocytes is the isomer lacking phosphate at position 3: A NMR study, FEBS Lett. 213:278–282.PubMedCrossRefGoogle Scholar
  94. McCollom, E. V., and Hart, E. B., 1908, On the occurrence of a phytin-splitting enzyme in animal tissues, J. Biol. Chem. 4:497–500.Google Scholar
  95. McConnell, F. M., Stephens, L. R., and Shears, S. B., 1991, Multiple isomers of inositol penta-kisphosphates in Epstein-Barr virus transformed (T5-1) B-lymphocytes. Identification of inositol (1,3,4,5,6) pentakisphosphate, D-inositol (1,2,4,5,6) pentakisphosphate and L-inositol (1,2,4,5,6) pentakisphosphate, Biochem. J. 280:323–329.PubMedGoogle Scholar
  96. McConnell, F. M., Shears, S. B., Lane, P.J.L., Scheibel, M. S., and Clark, E. A., 1992, Relationships between the degree of cross-linking of surface immunoglobulin and the associated inositol 1,4,5-trisphosphate and Ca2+ signals in human B cells, Biochem. J. 284:447–455.PubMedGoogle Scholar
  97. McEwan, G.T.A., Hirst, B. H., and Simmons, N. L., 1994, Carbachol stimulates Cl- secretion via activation of two distinct apical Cl- pathways in cultured human T84 intestinal epithelial monolayers, Biochim. Biophys. Acta 1220:241–247.PubMedCrossRefGoogle Scholar
  98. Mcintosh, R. P., and Mcintosh, J.E.A., 1990, Formation of inositol pentakisphosphate by ovarian follicles of Xenopus laevis oocytes from metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4,5) tetrakisphosphate and from receptor activation, Biochem. Biophys. Res. Commun. 166:380–386.PubMedCrossRefGoogle Scholar
  99. Menniti, F. S., Oliver, K. G., Nogimori, K., Obie, J. F., Shears, S. B., and Putney, J. W., Jr., 1990, Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate, J. Biol. Chem. 265:11167–11176.PubMedGoogle Scholar
  100. Menniti, F. S., Miller, R. N., Putney, J. W., Jr., and Shears, S. B., 1993a, Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells, J. Biol. Chem. 268:3850–3856.PubMedGoogle Scholar
  101. Menniti, F. S., Oliver, K. G., Putney, J. W., Jr., and Shears, S. B., 1993b, Inositol phosphates and cell signalling: New view of InsP 5 and lnsP 6, Trends Biochem. Sci. 18:53–56.PubMedCrossRefGoogle Scholar
  102. Michell, R. H., King, C. E., Piper, C. E., Stephens, L. R., Bunce, C. M., Guy, G. R., and Brown, G., 1988, Inositol lipids and phosphates in erythrocytes and HL60 cells, Soc. Gen. Physiol. Ser. 43:345–355.PubMedGoogle Scholar
  103. Mitchell, R., MacEwan, D., Dougan, L., Johnson, M., and Thomson, F., 1991, Does inositol hexakisphosphate induce calcium entry into GH3 cells, Biochem. Soc. Trans. 19:116s.Google Scholar
  104. Moore, R. J., and Veum, T. L., 1983, Adaptive increase in phytate digestibility by phosphorus-deprived rats and the relationship of intestinal phytase (EC and alkaline phosphatase (EC to phytate utilization, Br. J. Nutr. 49:145–152.PubMedCrossRefGoogle Scholar
  105. Morris, A. P., Kirk, K. L., and Frizzell, R. A., 1990, Simultaneous analysis of cell Ca2+ and Ca2+-stimulated chloride conductance in colonic epithelial cells (HT-29), Cell Regul. 1:951–963.PubMedGoogle Scholar
  106. Mountford, J. C., Bunce, C. M., French, P. J., Michell, R. H., and Brown, G., 1994, Intracellular concentrations of inositol, glycerophosphoinositol, and inositol pentakisphosphate increase during haematopoietic cell differentiation, Biochem. Biophys. Acta. 1222:101–108.PubMedCrossRefGoogle Scholar
  107. Murphy, J.-E., Hanover, J. A., Froehlich, M., DuBois, G., and Keen, J. H., 1994, Clathrin assembly protein AP-3 is phosphorylated and glycosylated on the 50 kD structural domain, J. Biol. Chem. 269:21346–21352.PubMedGoogle Scholar
  108. Nauntofte, B., 1992, Regulation of electrolyte and fluid secretion in salivary acinar cells, Am. J. Physiol. 263:G823–G837.PubMedGoogle Scholar
  109. Newton, C. L., Mignery, G. A., and Südhof, T. C., 1994, Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP 3) receptors with distinct affinities for InsP 3, J. Biol. Chem. 269:28613–28619.PubMedGoogle Scholar
  110. Nicoleti, F., Bruno, V., Fiore, L., Cavallaro, S., and Canonico, P. L., 1989, Inositol hexakisphosphate (phytic acid) enhances Ca2+ influx and D-[3H]aspartate release in cultured cerebellar neurons, J. Neurochem. 53:1026–1030.CrossRefGoogle Scholar
  111. Nogimori, K., Hughes, P. J., Glennon, M. C., Hodgson, M. E., Putney, J. W., Jr., and Shears, S. B., 1991, Purification of an inositol 1,3,4,5-tetrakisphosphate 3-phosphatase from rat liver and the evaluation of its substrate specificity, J. Biol. Chem. 266:16499–16506.PubMedGoogle Scholar
  112. Norris, F. A., Ungewickell, E., and Majerus, P. W., 1995, Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP-3/AP180) and inhibits clathrin cage assembly in vitro, J. Biol. Chem.270:214–217.PubMedCrossRefGoogle Scholar
  113. Oliver, K. G., Putney, J. W., Jr., Obie, J. F., and Shears, S. B., 1992, The interconversion of inositol 1,3,4,5,6-pentakisphosphate and inositol tetrakisphosphates in AR4-2J cells, J. Biol. Chem. 267:21528–21534.PubMedGoogle Scholar
  114. Palczewski, K., Pulvermuller, A., Buczylko, J., Gutmann, C., and Hofmann, K. P., 1991, Binding of inositol phosphates to arrestin, FEBS Lett. 295:195–199.PubMedCrossRefGoogle Scholar
  115. Palczewski, K., Rispoli, G., and Detwiler, P. B., 1992, The influence of arrestin (48K protein) and rhodopsin kinase upon visual transduction, Neuron 8:117–126.PubMedCrossRefGoogle Scholar
  116. Palmer, S., Hughes, K. T., Lee, D.D.Y., and Wakelam, M.J.O., 1988, Development of a novel, Ins(1,4,5)P 3-specific, binding assay. Its use to determine the intracellular concentration of Ins(1,4,5)P 3 in unstimulated and vasopressin-stimulated rat hepatocytes, Cell Signal. 1:147–156.CrossRefGoogle Scholar
  117. Pauloin, A., and Thurieau, C., 1993, The 50 kDa protein subunit of assembly polypeptide (AP) AP-2 adaptor from clathrin-coated vesicles is phosphorylated on theronine-156 by AP-1 and a soluble AP50 kinase which co-purifies with the assembly polypeptides, Biochem. J. 296:409–415.PubMedGoogle Scholar
  118. Pelham, H.R.B., 1989, Control of protein exit from the endoplasmic reticulum, Annu. Rev. Cell Biol. 5:1–23.PubMedCrossRefGoogle Scholar
  119. Petersen, O. H., 1992, Stimulus-secretion coupling: Cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells, J. Physiol. 448:1–51.PubMedGoogle Scholar
  120. Phillippy, B. Q., and Bland, J. M., 1988, Gradient ion chromatography of inositol phosphates, Anal. Biochem. 175:162–168.PubMedCrossRefGoogle Scholar
  121. Phillippy, B. Q., Ulah, A.H.J., and Ehrlich, K.C., 1994, Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds, J. Biol. Chem. 269: 28393–28399.PubMedGoogle Scholar
  122. Pietrusiewicz, K. M., Salamornczyk, G. M., Bruzik, K. S., and Wieczorek, W., 1992, The synthesis of homochiral inositol phosphates from myo-inositol, Tetrahedron 48:5523–5542.CrossRefGoogle Scholar
  123. Pietrusiewicz, K. M., Salamornczyk, G. M., Bruzik, K. S., and Wieczorek, W., 1994, Corrigendum, Tetrahedro 50:573.CrossRefGoogle Scholar
  124. Pippig, S., Andexinger, S., Daniel, K., Puzicha, M., Caron, M. G., Lefkowitz, R. J., and Lohse, M. J., 1993, Overexpression of β-arrestin and β-adrenergic receptor kinase augment desensiti-zation of β2-adreneric receptors, J. Biol. Chem. 268:3201–3208.PubMedGoogle Scholar
  125. Pittet, D., Schlegel, W., Lew, D. P., Monod, A., and Mayr, G. W., 1989, Mass changes in inositol tetrakis-and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells, J. Biol. Chem. 264:18489–18493.PubMedGoogle Scholar
  126. Poyner, D. R., Cooke, F., Hanley, M. R., Reynolds, D.J.M., and Hawkins, P. T., 1993, Characterization of metal-ion induced [3H]inositol hexakisphosphate binding to rat cerebella membranes, J. Biol. Chem. 268:1032–1038.PubMedGoogle Scholar
  127. Putney, J. W., Jr., 1992, Inositol phosphates and calcium entry, Adv. Second Messenger Phosphopro-tein Res. 26:143–160.Google Scholar
  128. Raboy, V., 1990, Biochemistry and genetics of phytic acid synthesis, in Inositol Metabolism in Plants (D. J. Morré, W. F. Boss, and F. A. Loewus, eds.), pp. 55–76, Wiley-Liss, New York.Google Scholar
  129. Rao, R. K., and Ramakrishnan, C. V., 1985, Studies on inositolphosphatase in rat small intestine, Enzyme 33:205–215.PubMedGoogle Scholar
  130. Rapoport, S., 1940, Phytic acid in avian erythrocytes, J. Biol. Chem. 135:403–406.Google Scholar
  131. Rapoport, S., and Guest, G. M., 1941, Distribution of acid-soluble phosphorus in blood cells of various vertebrates, J. Biol. Chem. 138:269–282.Google Scholar
  132. Reaves, B., and Banting, G. (1994) Vacuolar ATPase inactivation blocks recycling to the trans-Golgi network from the plasma membrane, FEBS Lett. 345:61–66.PubMedCrossRefGoogle Scholar
  133. Ren, H.-Y., Komatsu, N., Shimizu, R., Okada, K., and Miura, Y., 1994, Erythropoietin induces tyrosine phosphorylation and activation of phospholipase C-γ1 in a human erythropoietin-dependent cell line, J. Biol. Chem. 269:19633–19638.PubMedGoogle Scholar
  134. Rothman, J. E., 1994, Mechanisms of intracellular protein transport, Nature 372:55–63.PubMedCrossRefGoogle Scholar
  135. Rubiera, C., Velasco, G., Michell, R. H., Lazo, P. S., and Shears, S. B., 1988, 1D-myo-Inositol 1,4,5-trisphosphate dephosphorylation by rat enterocytes involves an intracellular 5-phospha-tase and non-specific phosphatase activity at the cell surface, Biochem. J. 255:131–137.PubMedGoogle Scholar
  136. Sasakawa, N., Nakaki, T., Kashima, R., Kanba, S., and Kato, R., 1992, Stimulus-induced accumulation of inositol tetrakis-pentakis-and hexakisphosphate in NIE-115 neuroblastoma cells, J. Neurochem. 58:2116–2123.PubMedCrossRefGoogle Scholar
  137. Sasakawa, N., Ferguson, J. E., Sharif, M., and Hanley, M. R., 1994, Attenuation of agonist-induced desensitization of the rat substance P receptor by microinjection of inositol pentakis-and hexakisphosphates in Xenopus laevis oocytes, Mol. Pharmacol. 46:380–385.PubMedGoogle Scholar
  138. Sasakawa, N., Sharif, M., and Hanley, M. R., 1995, Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosophate, Biochem. Pharmacol. 50:137–146.PubMedCrossRefGoogle Scholar
  139. Shears, S. B., 1989, The pathway of myo-inositol 1,3,4-trisphosphate phosphorylation in liver. Identification of myo-inositol 1,3,4-trisphosphate 6-kinase, myo-inositol 1,3,4-trisphosphate 5-kinase and myo-inositol 1,3,4,6-tetrakisphosphate 6-kinase, J. Biol. Chem. 264:19879–19886.PubMedGoogle Scholar
  140. Shears, S. B., 1992, Metabolism of inositol phosphates, Adv. Second Messenger Phosphoprotein Res. 26:63–92.PubMedGoogle Scholar
  141. Shears, S. B., Parry, J. B., Tang, E.K.Y., Irvine, R. F., Michell, R. H., and Kirk, C. J., 1987, Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate, Biochem. J. 246:139–147.PubMedGoogle Scholar
  142. Shears, S. B., Ali, N., Craxton, A., and Bembenek, M. E., 1995, Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo, J. Biol. Chem. 270:10489–10497.PubMedCrossRefGoogle Scholar
  143. Smith, S. E., and Dürmüller, N., 1990, Inositol hexakisphosphate is convulsant in mice and rats in the nanaolar range, Eur. J. Pharmacol. 191:337–343.PubMedCrossRefGoogle Scholar
  144. Sorkin, A., and Waters, C. M., 1993, Endocytosis of growth factor receptors, BioEssays 15:375–382.PubMedCrossRefGoogle Scholar
  145. Sortino, M. A., Nicoletti, F., and Cannnnonico, P. O., 1990, Inositol hexakisphosphate stimulates 45Ca2+ uptake in anterior pituitary cells in culture, Eur. J. Pharmacol., 189:115–118.PubMedCrossRefGoogle Scholar
  146. Srere, P. A., 1987, Complexes of sequential metabolic enzymes, Ann. Rev. Biochem. 56:89–24.PubMedCrossRefGoogle Scholar
  147. Stephens, L. R., and Downes, C. P., 1990, Product-precursor relationships amongst inositol polyphosphates. Incorporation of [32P]Pi into myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4,6-tetrakisphosphate, myo-inositol 3,4,5,6-tetrakisphosphate and myo-inositol 1,3,4,5,6-pentakisphosphate, Biochem. J. 265:435–452.PubMedGoogle Scholar
  148. Stephens, L. R., and Irvine, R. F., 1990, Stepwise phosphorylation of myo-inositol leading to myo inositol hexakisphosphate in Dictyostelium, Nature 346:580–583.PubMedCrossRefGoogle Scholar
  149. Stephens, L. R., Hawkins, P. T., Barker, C. J., and Downes, C. P., 1988a, Synthesis of myo-inositol 1,3,4,5,6-pentakisphosphate from inositol phosphates generated by receptor activation, Biochem. J. 253:721–733.PubMedGoogle Scholar
  150. Stephens, L. R., Hawkins, P. T., Carter, N., Chahwala, S. B., Morris, A. J., Whetton, A. D., and Downes, C. P., 1988b, L-MYO-Inositol 1,4,5,6-tetrakisphosphate is present in both mammalian and avaian cells, Biochem. J. 249:271–282.PubMedGoogle Scholar
  151. Stephens, L. R., Hawkins, P. T., Morris, A. P., and Downes, C. P., 1988c, L-myo-Inositol 1,4,5,6-tetrakisphosphate (3-hydroxy)kinase, Biochem. J. 249:283–292.PubMedGoogle Scholar
  152. Stephens, L. R., Hawkins, P. T., and Downes, C. P., 1989, An analysis of myo[3H]inositol trisphosphate found in myo-[3H]inositol prelabelled avian erythrocytes, Biochem. J. 262:727–737.PubMedGoogle Scholar
  153. Stephens, L. R., Hawkins, P. T., Stanley, A. F., Moore, T., Poyner, D. R., Morris, P. J., Hanley, M. R., Kay, R. R., and Irvine, R. F., 1991, myo-Inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate, Biochem. J. 275:485–499.PubMedGoogle Scholar
  154. Stephens, L. R., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.-H., Dell, A., Jackson, T. R., Hawkins, P. T., and Mayr, G. W., 1993, The detection, purification, structural characterization and metabolism of diphosphoinositol pentakisphosphate(s) and bisdisphosphoinositol tetra-kisphosphate(s), J. Biol. Chem. 268:4009–4015.PubMedGoogle Scholar
  155. Stewart, S. J., Kelley, L. L., and Powers, F. S., 1987, Production of inositol pentakisphosphate in a human T-lymphocyte cell-line, Biochem. Biophys. Res. Commun. 145:902–985.CrossRefGoogle Scholar
  156. Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic de-phosphorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312:374–376.PubMedCrossRefGoogle Scholar
  157. Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I., 1983, Release of C from a nonmitochondrial store in pancreatic acinar cells by inositol 1,4,5-trisphosphate, Nature 306:67–69.PubMedCrossRefGoogle Scholar
  158. Stuart, J. A., Anderson, K. L., French, P. J., Kirk, R. H., and Michell, R. H., 1994, The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells, Biochem. J. 303:517–525.PubMedGoogle Scholar
  159. Südhof, T. C., 1995, The synaptic vesicle cycle: A cascade of protein-protein interactions, Nature 375:645–653.PubMedCrossRefGoogle Scholar
  160. Sun, M., Wahlestedt, C., and Reis, D. J., 1992, Inositol hexakisphosphate excites rat medullary sympathoexcitatory neurones in vivo, Eur. J. Pharmacol. 215:9–16.PubMedCrossRefGoogle Scholar
  161. Szwergold, B. S., Graham, R. A., and Brown, T. R., 1987, Observation of inositol pentakis-and hexakis-phosphates in mammalian tissues by 31P-NMR, Biochem. Biophys. Res. Commun. 149:874–881.PubMedCrossRefGoogle Scholar
  162. Szuts, E. Z., Wood, S. F., Reid, M. S., and Fein, A., 1986, Light stimulates the rapid formation of inositol trisphosphate in squid retina, Biochem. J. 240:929–932.PubMedGoogle Scholar
  163. Tarver, A. P., King, W. G., and Rittenhouse, S. E., 1987, Inositol 1,4,5-trisphosphate and inositol 1,2-cyclic 4,5-trisphosphate are minor components of total mass of inositol trisphosphate in thrombin-stimulated platelets, J. Biol. Chem. 262:17268–17271.PubMedGoogle Scholar
  164. Theibert, A. B., Estevez, V. A., Mourey, R. J., Maracek, J. F., Barrow, R. K., Prestwich, G. D., and Snyder, S. H., 1992, Photoaffinity labeling and characterization of isolated inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate-binding proteins, J. Biol. Chem. 267:9071–9079.PubMedGoogle Scholar
  165. Timerman A. P., Mayrleitner, M. M., Lukas, T. J., Chadwick, C. C., Saito, A., Watterson, D. M., Schindler, H., and Fleischer, S., 1992, Inositol polyphosphate receptor and clathrin assembly protein AP-2 are related proteins that form potassium-sensitive ion channels in planar lipid layers, Proc. Natl. Acad. Sci. U.S.A. 89:8976–8980.PubMedCrossRefGoogle Scholar
  166. Tomlinson, R. V., and Ballou, C. E., 1962, Myoinositol polyphosphate intermediates in the de-phosphorylation of phytic acid by phytase, Biochemistry 1:166–171.PubMedCrossRefGoogle Scholar
  167. Traynor-Kaplan, A. E., Buranawuti, T., Vajanaphanich, M., and Barrett, K. E., 1994, Protein kinase C activity does not mediate the inhibitory effects of carbachol on chloride secretion by T84 cells, Am. J. Physiol. 267:C1224–C1230.PubMedGoogle Scholar
  168. Vajanaphanich, M., Schultz, C., Rudolf, M. T., Wasserman, M., Enyedi, P., Craxton, A., Shears, S. B., Tsien, R. Y., Barrett, K. E., and Traynor-Kaplan, A., 1994, Long-term uncoupling of chloride secretion from intracellular calcium by Ins(3,4,5,6)P 4, Nature 371:711–714.PubMedCrossRefGoogle Scholar
  169. Vallejo, M., Jackson, T., Lightman, S., and Hanley, M. R., 1987, Occurrence and extracellular actions of inositol pentakis-and hexakisphosphate in mammalian brain, Nature 330:656–658.PubMedCrossRefGoogle Scholar
  170. Van Dijken, P., de Hass, J.-R., Craxton, A., Erneux, C., Shears, S. B., and Van Hasstert, L. 1995, A novel, phospholipase C independent, pathway of Ins(l,4,5)P 3 synthesis in Dictyostelium and rat liver, J. Biol. Chem., 270:29724–29731.PubMedCrossRefGoogle Scholar
  171. Voglmaier, S. M., Keen, J. H., Murphy, J.-E., Ferris, C. D., Prestwich, G. D., Snyder, S. S., and Theibert, A. B., 1992, Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2, Biochem. Biophys. Res. Commun. 187:158–163.PubMedCrossRefGoogle Scholar
  172. Vucenik, I., and Shamsuddin, A. M., 1994, [3H]Inositol hexaphosphate (phytic acid) is rapidly absorbed and metabolized by murine and human malignant cells in vitro, J. Nutr. 124:861–868.PubMedGoogle Scholar
  173. Wilson, D. W., Lewis, M. J., and Pelham, H.R.B., 1993, pH-dependent binding of KDEL to its receptor in vitro, J. Biol. Chem. 268:7465–7468.PubMedGoogle Scholar
  174. Wong, N. S., Barker, C. J., Morris, A. J., Craxton, A., Kirk, C. J., and Michell, R. H., 1992, The inositol phosphates in WRK1 rat mammary tumour cells, Biochem. J. 286:459–468.PubMedGoogle Scholar
  175. Wood, S. F., Szuts, E. Z., and Fein, A., 1989, Inositol trisphosphate production in squid photoreceptors. Activation by light, aluminum fluoride and guanine nucleotides, J. Biol. Chem. 264:12970–12976.PubMedGoogle Scholar
  176. Worrell, R. T., and Frizzell, R. A., 1991, CaMKII mediates stimulation of chloride conductance by calcium in T84 cells, Am. J. Physiol. 260:C877–C882.PubMedGoogle Scholar
  177. Wu, J. T., Gong, Q., Chou, R. H., and Weiland, S. J., 1991, Ca2+-insensitive modulation of a K+ conductance by inositol polyphosphates, J. Biol. Chem. 266:14893–14895.PubMedGoogle Scholar
  178. Xie, J., and Fleischer, B., 1994, Isolation and characterization of a novel inositol hexakisphosphate binding protein from mammalian cell cytosol, Biochemistry 33:7908–7916.PubMedCrossRefGoogle Scholar
  179. Ye, W., Ali, N., Bembenek, M. E., Shears, S. B., and Lafer, E. M., 1995, Inhibition of clathrin assembly by high-affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3, J. Biol. Chem. 270:1564–1568.PubMedCrossRefGoogle Scholar
  180. Yoshida, M., Kanematsu, T., Watanabe, Y., Koga, Y., Ozaki, S., Iwanaga, S., and Hirata, M., 1994, D-myo-inositol 1,4,5-trisphosphate binding in rat brain membranes, J. Biochem. 115:973–980.PubMedGoogle Scholar
  181. Zhang, J. Z., Davletov, B. A., Südhof, T. C., and Anderson, R.G.W., 1994, Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling, Cell 78:751–760.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Stephen B. Shears
    • 1
  1. 1.Inositol Lipid Section, Laboratory of Cellular and Molecular PharmacologyNational Institute of Environmental Health Sciences, National Institutes of HealthNorth CarolinaUSA

Personalised recommendations