Structural and Functional Roles of Glycosylphosphoinositides

  • Alan R. Saltiel
Part of the Subcellular Biochemistry book series (SCBI, volume 26)


Many proteins are anchored to the cell surface by hydrophobic interactions with the membrane bilayer. Several structural motifs are utilized for membrane anchorage in mammalian cells, including the covalent attachment of proteins to lipids (Saltiel et al., 1991). One such mechanism involves the linkage of proteins to a glycosylated form of phosphatidylinositol (PI), termed glycosylphosphatidylinositol (GPI). This mechanism has been detected in a variety of cell types and is utilized by over 100 membrane proteins (Ferguson and Williams, 1988; Low and Saltiel, 1988). Additionally, a glycophospholipid with several structural similarities to the GPI anchor has been described in a number of cell types (Saltiel and Cuatrecasas, 1986, 1988; Saltiel et al., 1986). This lipid, which shares the core structure of the membrane anchor and may represent a biosynthetic intermediate, undergoes a phospholipase C (PLC)-catalyzed hydrolysis in response to insulin and functionally related growth factors, generating an aqueous glycan in cells that mediates some of the actions of the hormone (Saltiel and Cuatrecasas, 1986; Saltiel et al., 1986). Although the precise relationship between the protein anchored and the hormone-sensitive free form of the lipid remains unknown, numerous similarities suggest that these glycolipids may participate in related functions in cellular regulation. This chapter focuses on the unusual properties and important roles of this unique class of lipids in cellular regulation.


Hydrophobic Domain Trypanosoma Brucei Membrane Anchor Variant Surface Glycoprotein Placental Alkaline Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alemany, S., Mato, J. M., and Stralfors, P., 1987, Phosphodephospho-control by insulin is mimicked by a phosphooligosaccharide in adipocytes, Nature 330:77–79.PubMedCrossRefGoogle Scholar
  2. Alvarez, J. F., Cabello, M. A., Feliu, J. E., and Mato, J. M., 1987, A phosphooligosaccharide mimics insulin action on glycogen Phosphorylase and pyruvate kinase activities in isolated rat hepatocytes, Biochem. Biophys. Res. Commun. 147:765–771.PubMedCrossRefGoogle Scholar
  3. Alvarez, J. F., Varela, I., Ruiz-Albusac, J. M., and Mato, J. M., 1988, Localisation of the insulin-sensitive phosphatidylinositol glycan at the outer surface of the cell membrane, Biochem. Biophys. Res. Commun. 152:1455–1462.PubMedCrossRefGoogle Scholar
  4. Alvarez, L., Avila, M. A., Mato, J. M., Castano, J. G., and Varela-Nieto, I., 1991, Insulin-like effects of inositol phosphate-glycan on messenger RNA expression in rat hepatocytes, Mol. Endocrinol. 5:1062–1068.PubMedCrossRefGoogle Scholar
  5. Anderson, R.G.W., 1993, Caveolae: Where incoming and outgoing messengers meet, Proc. Natl. Acad. Sci. U.S.A. 90:10909–10913.PubMedCrossRefGoogle Scholar
  6. Bailey, C. A., Gerber, L., Howard, A. D., and Udenfriend, S., 1989, Processing at the carboxyl terminus of nascent placental alkaline phosphatase in a cell-free system: Evidence for specific cleavage of a signal peptide, Proc. Natl. Acad. Sci. U.S.A. 86:22–26.PubMedCrossRefGoogle Scholar
  7. Bangs, J. D., Hereld, D., Krakow, J. L., Hart, G. W., and Englund, P. T., 1985, Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein, Proc. Natl. Acad. Sci. U.S.A. 82:3207–3211.PubMedCrossRefGoogle Scholar
  8. Berger, J., Howard, A. D., Brink, L., Gerber, L., Hauber, J., Cullen, B. R., and Udenfriend, S., 1988, COOH-terminal requirements for the correct processing of a phosphatidylinositol-glycan anchored membrane protein, J. Biol. Chem. 263:10016–10021.PubMedGoogle Scholar
  9. Berger, J., Micanovic, R., Greenspan, R. J., and Udenfriend, S., 1989, Conversion of placental alkaline phosphatase from a phosphatidylinositol-glycan-anchored protein to an integral transmembrane protein, Proc. Natl. Acad. Sci. U.S.A. 86:1457–1460.PubMedCrossRefGoogle Scholar
  10. Boothroyd, J. C., Cross, G.A.M., Hoeijmakers, J.H.J., and Borst, P., 1980, Variant surface glycoprotein of Trypanosoma brucei synthesized with a C-terminal hydrophobic “tail” absent from purified glycoprotein, Nature 288:624–626.PubMedCrossRefGoogle Scholar
  11. Brown, D. A., and Rosy, J. K., 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell 68:533–544.PubMedCrossRefGoogle Scholar
  12. Bulow, R., Griffiths, G., Webster, P., Stierhof, Y. D., Opperdoes, F. R., and Overath, P., 1989, Intracellular localization of the GPI-specific phospholipase C of Trypanosoma brucei, J. Cell Sci. 93:233–240.Google Scholar
  13. Caras, I. W., and Weddell, G. N., 1989, Signal peptide for protein secretion directing gly-cophospholipid membrane anchor attachment, Science 243:1196–1198.PubMedCrossRefGoogle Scholar
  14. Caras, I. W., Davitz, M. A., Rhee, L., Weddell, G., Martin, D. W., and Nussenzweig, V., 1987a, Cloning of decay-accelerating suggests novel use of splicing to generate two proteins, Nature 325:545–548.PubMedCrossRefGoogle Scholar
  15. Caras, I. W., Weddell, G. N., Davitz, M. A., Nussenzweig, V., and Martin, D. W., 1987b, Signal for attachment of a phospholipid membrane anchor in decay accelerating factor, Science 238:1280–1283.PubMedCrossRefGoogle Scholar
  16. Chan, B. L., Lisanti, M. P., Rodriguez-Boulan, E., and Saltiel, A. R., 1988, Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor, Science 241:1670–1672.PubMedCrossRefGoogle Scholar
  17. Chan, B. L., Chao, M. V., and Saltiel, A. R., 1989, Nerve growth factor stimulates the hydrolysis of glycosyl-phosphatidylinositol in PC-12 cells: A mechanism of protein kinase C regulation, Proc. Natl. Acad. Sci. U.S.A. 86:1756–1760.PubMedCrossRefGoogle Scholar
  18. Conzelmann, A., Spiazzi, A., and Bron, C., 1987, Glycolipid anchors are attached to Thy-1 glycoprotein rapidly after translocation, Biochem. J. 246:605–610.PubMedGoogle Scholar
  19. Crise, B., Ruusala, A., Zagouras, P., Shaw, A., and Rose, J. K., 1989, Oligomerization of glycolipid-anchored and soluble forms of the vesicular somatitis virus glycoprotein, J. Virol. 63:5328–5333.PubMedGoogle Scholar
  20. Davitz, M. A., Hereld, D., Shak, S., Krakow, J., Englund, P. T., and Nussenzweig, V., 1987, A glycan-phosphatidylinositol-specific phospholipse D in human serum, Science 238:81–84.PubMedCrossRefGoogle Scholar
  21. Davitz, M. A., Hom, J., and Schenkman, S., 1989, Purification of a glycosyl-PI-specific phospho-lipase D from human plasma, J. Biol. Chem. 264:13760–13764.PubMedGoogle Scholar
  22. Deterrontegui, G., and Berthet, J., 1966, The action of insulin on the incorporation of [32P]phosphate in the phospholipids of rat adipose tissue, Biochim. Biophys. Acta 116:477–481.Google Scholar
  23. Doering, T. L., Masterson, W. J., Hert, G. W., and Englund, P. T., 1990, Biosynthesis of glycosyl phosphatidylinositol membrane anchors, J. Biol. Chem. 265:611–614.PubMedGoogle Scholar
  24. Dragsten, P., Henkart, P., Blumenthal, R., Weinstein, J., and Schlessinger, J., 1979, Lateral diffusion of surface immunoglobulin, Thy-1 antigen, and a lipid probe in lymphocyte plasma membranes, Proc. Natl. Acad. Sci. U.S.A. 76:5163–5167.PubMedCrossRefGoogle Scholar
  25. Dustin, M. L., Selveraj, P., Mattaliano, R. J., and Springer, T. A., 1987, Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface, Nature 329:846–848.PubMedCrossRefGoogle Scholar
  26. Eardley, D. D., and Koshland, M. E., 1991, Glycosylphosphatidylinositol: A candidate system for interleukin-2 signal transduction, Science 251:78–81.PubMedCrossRefGoogle Scholar
  27. Farese, R. V., Davis, J. T., Barnes, D. E., Standaert, M. L., Bebishkin, J., Hock, R., Rosie, N. K., and Pollet, R. J., 1985, The de novo phospholipid effect of insulin is associated with increases in diacylglycerol, but not inositol phosphates or cytosolic Ca, Biochem. J. 231:269–278.PubMedGoogle Scholar
  28. Farese, R. V., Cooper, D. R., Konda, T. S., Nair, G., Standart, M. L., Davis, J. S., and Pollet, R. J., 1988a, Mechanisms whereby insulin increases diacylglycerol in BC3H1 myocytes, Biochem. J. 256:175–184.PubMedGoogle Scholar
  29. Farese, R. V., Cooper, D. R., Konda, T. S., Nair, G., Standart, M. L., and Pollet, R. J., 1988b. Insulin provokes coordinated increases in the synthesis of phosphatidylinositol, phospha-tidylinositolphosphates and the phosphatidylinositol-glycan in BC3H1 myocytes, Biochem. J. 256:185–188.PubMedGoogle Scholar
  30. Farese, R. V., Standaert, M. L., Yamada, K., Huang, L. C., Zhang, C., Cooper, D. R., Wang, Z., Yang, Y., Suzuki, S., Toyota, T., and Larner, J., 1994, Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin resistant, type II diabetic Goto-Kakizaki rats, Proc. Natl. Acad. Sci. U.S.A. 91:11040–11044.PubMedCrossRefGoogle Scholar
  31. Ferguson, M.A.J., and Williams, A. F., 1988, Cell-surface anchoring of proteins via glycosylphosphatidylinositol structures, Annul Rev. Biochem. 57:285–320.CrossRefGoogle Scholar
  32. Ferguson, M.A.J., Duszenko, M., Lamont, G. S., Overath, P., and Cross, G.A.M., 1986, Biosynthesis of Trypanosoma brucei variant surface glycoproteins, J. Biol. Chem. 261:356–362.PubMedGoogle Scholar
  33. Ferguson, M.A.J., Homans, S. W., Dwek, R. A., and Rademacher, T. W., 1988, Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane, Science 239:753–759.PubMedCrossRefGoogle Scholar
  34. Fox, J. A., Duszenko, M., Ferguson, M.A.J., Low, M. G., and Cross, G.A.M., 1986, Purification and characterization of a novel glycan-PI specific phospholipase C from T brucei, J. Biol. Chem. 261:15767–15771.PubMedGoogle Scholar
  35. Fox, J. A., Soliz, N. M., and Saltiel, A. R., 1987, Purification of a phosphatidylinositol-glycan specific phospholipase C from liver plasma membranes: A possible target of insulin action, Proc. Natl. Acad. Sci. U.S.A. 84:2663–2667.PubMedCrossRefGoogle Scholar
  36. Gaulton, G. N., 1991, Differential regulation of glycosylated phosphatidylinositol subtypes by insulin, Diabetes 40:1297–1304.PubMedCrossRefGoogle Scholar
  37. Gaulton, G. N., Kelly, K. L., Pawlowski, J., Mato, J. M., and Jarett, L., 1988, Regulation and function of an insulin-sensitive glycosylphosphatidylinositol during T lymphocyte activation, Cell 538:963–970.CrossRefGoogle Scholar
  38. Gottschalk, W. K., and Jarett, L., 1988, The insulinomimetic effects of the polar head group of an insulin-sensitive glycophospholipid on pyruvate dehydrogenase in both subcellular and whole cell assays, Arch. Biochem. Biophys. 261:175–185.PubMedCrossRefGoogle Scholar
  39. Gower, H. J., Barton, C. H., Elsom, V. L., Thompson, J., Moore, S. E., Dickson, G., and Walsh, F. S., 1988, Alternative splicing generates a secreted form of N-CAM in muscle and brain, Cell 55:955–964.PubMedCrossRefGoogle Scholar
  40. Hayashi, Y., Urade, R., Utsumi, S., and Kito, M., 1989, Anchoring of peptide elongation factor EF-la by phosphatidylinositol at the endoplasmic reticulum membrane, Biochem. J. 106:560–563.Google Scholar
  41. He, H. T., Finne, J., and Goridis, C., 1987, Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule, J. Cell Biol. 105:2489–2500.PubMedCrossRefGoogle Scholar
  42. Hemperly, J. J., Edelman, G. N., and Cunningham, B. A., 1986, cDNA clones of N-CAM lacking a membrane-spanning region consistent with evidence for membrane attachment via a phosphatidylinositol intermediate, Proc. Natl. Acad. Sci. U.S.A. 83:9822–9826.PubMedCrossRefGoogle Scholar
  43. Hereld, D., Hart, G. W., and Englund, P. T., 1988, cDNA encoding the glycosyl-PI-specific phospholipase C of T. brucei, Proc. Natl. Acad. Sci. U.S.A. 85:8914–8918.PubMedCrossRefGoogle Scholar
  44. Hibbs, M. L., Selvaraj, P., Carpen, O., Springer, T. A., Kuster, H., Jouvin, M. H. E., and Kinet, J. P., 1989, Mechanisms for regulating expression of membrane isoforms of Fc gamma R III (CD 16), Science 246:1608–1611.PubMedCrossRefGoogle Scholar
  45. Homans, S. W., Ferguson, M.A.J., Dwek, R. A., Rademacher, T. W., Anand, R., and Williams, A. F., 1988, Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein, Nature 333:269–272.PubMedCrossRefGoogle Scholar
  46. Huang, L. C., Fonteles, M. C., Houston, D. B., Zhang, C., and Larner, J., 1993, Chiroinositol deficiency and insulin resistance. III. Acute glycogenic and hypoglycemic effects of two inositol phosphoglycan insulin mediators in normal and streptozotocin-diabetic rats in vivo, Endocrinology 132:652–657.PubMedCrossRefGoogle Scholar
  47. Huizinga, T.W.J., van der Schoot, C. E., Jost, C., Klaassen, R., Kleijer, M., von dem Borne, A.E.G.K., Roos, D., and Tetteroo, P.A.T., 1988, The PI-linked receptor FcRIII is released on stimulation of neutrophils, Nature 333:667–669.PubMedCrossRefGoogle Scholar
  48. Ishihara, A., Hou, Y., and Jacobson, K., 1987a, The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 84:1290–1293.PubMedCrossRefGoogle Scholar
  49. Ishihara, M., Fedearko, N. S., and Conrad, H. E., 1987b, Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparin sulfate metabolism and hepatocyte growth, J. Biol. Chem. 262:4708–4716.PubMedGoogle Scholar
  50. Karnieli, E., Armoni, M., Cohen, P., Kanter, Y., and Rafaeloff, R., 1987, Reversal of insulin resistance in diabetic rat adipocytes by insulin therapy: Restoration of pool of glucose transporters and enhancement of glucose transport activity, Diabetes 36:925–931.PubMedCrossRefGoogle Scholar
  51. Kelly, K. L., Mato, J. M., and Jarett, L., 1986, The polar head group of a novel insulin-sensitive glycophospholipid mimics insulin action on phospholipid methyltransferase, FEBS Lett. 209:238–242.PubMedCrossRefGoogle Scholar
  52. Kelly, K. L., Mato, J. M., Merida, I., and Jarett, L., 1987a, Glucose transport and antilipolysis are differentially regulated by the polar head group of an insulin-sensitive glycophospholipid, Proc. Natl. Acad. Sci. U.S.A. 84:6404–6407.PubMedCrossRefGoogle Scholar
  53. Kelly, K. L., Merida, I., Wong, E.H.A., DiCenzo, D., and Mato, J. M., 1987b, A phos-pho-oligosaccharide mimics the effect of insulin to inhibit isoproterenol-dependent phosphorylation of phospholipid methyltransferase in isolated adipocytes, J. Biol. Chem. 262:15285–15290.PubMedGoogle Scholar
  54. Kiechle, F. L., Jarett, L., Kotagal, N., and Popp, D. A., 1980, Isolation from rat adipocytes of a chemical mediator for insulin activation of pyruvate dehydrogenase, Diabetes 29:852–855.PubMedCrossRefGoogle Scholar
  55. Klip, A., Ramlal, T., Douen, A. G., Burdett, E., Young, D., Cartee, G. D., and Holloszy, J. O., 1988, Insulin-induced decrease in 5′-nucleotidase activity in skeletal muscle membranes, FEBS Lett. 238:419–423.PubMedCrossRefGoogle Scholar
  56. Kojima, I., Kitaoka, M., and Ogata, E., 1990, Insulin-like growth factor-I stimulates diacylglycerol production via multiple pathways in Balb/c 3T3 cells, J. Biol. Chem. 265:16846–16850.PubMedGoogle Scholar
  57. Kurosaki, T., and Ravetch, J., 1989, A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of Fc gamma R III, Nature 342:805–807.PubMedCrossRefGoogle Scholar
  58. Lanier, L. L., Cwirla, S., Yu, G., Testi, R., and Phillips, J. H., 1989, Membrane anchoring of a human IgG Fc receptor (CD 16) determined by a single amino acid, Science 246:1611–1613.PubMedCrossRefGoogle Scholar
  59. Larner, J., Galasko, G., Cheng, K., DePaoli-Roach, A. A., Huang, L., Daggy, P., and Kellog, J., 1979, Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation, Science 206:1408–1410.PubMedCrossRefGoogle Scholar
  60. Larner, J., Huang, L. C., Schwartz, C.F.W., Oswald, A. S., Shen, T.-Y., Kinter, M., Tang, G., and Zeller, K., 1988, Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galactosamine and D-chiro-inositol, Biochem. Biophys. Res. Commun. 151:1416–1426.PubMedCrossRefGoogle Scholar
  61. Lazar, D. F., Knez, J. J., Medof, M. E., Cuatrecasas, P., and Saltiel, A. R., 1994, Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of gly-cosylphosphatidylinositol, Proc. Natl. Acad. Sci. U.S.A. 91:9665–9669.PubMedCrossRefGoogle Scholar
  62. Le Bel, D., and Beattie, M., 1988, The major protein of pancreatic zymogen granule membranes (GP-2) is anchored via covalent bonds to phosphatidylinositol, Biochem. Biophys. Res. Commun. 154:818–823.CrossRefGoogle Scholar
  63. Lisanti, M. P., Sargiacomo, M., Graeve, L., Saltiel, A. R., and Rodriguez-Boulan, E., 1988, Polarized apical distribution of glycosylphosphatidylinositol anchored proteins in a renal epithelial cell line, Proc. Natl. Acad. Sci. U.S.A. 85:9557–9561.PubMedCrossRefGoogle Scholar
  64. Lisanti, M. P., Caras, I. W., Davitz, M. A., and Rodriguez-Boulan, E., 1989a, A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells, J. Cell Biol. 109:2145–2156.PubMedCrossRefGoogle Scholar
  65. Lisanti, M. P., Darnell, J. C., Chan, B. L., Rodriguez-Boulan, E., and Saltiel, A. R., 1989b, The distribution of glycosyl-phosphoinositol anchored proteins is differentially regulated by serum and insulin, Biochem. Biophys. Res. Commun. 164:824–832.PubMedCrossRefGoogle Scholar
  66. Lisanti, M. P., Le Bivic, A., Saltiel, A. R., and Rodriguez-Boulan, E., 1990, Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: A highly conserved feature of the polarized epithelial cell phenotype, J. Membr. Biol. 113:155–167.PubMedCrossRefGoogle Scholar
  67. Low, M. G., and Prasad, A.R.S., 1988, A phospholipase D for the PI-anchor of cell-surface proteins is abundant in plasma, Proc. Natl. Acad. Sci. U.S.A. 85:980–984.PubMedCrossRefGoogle Scholar
  68. Low, M. G., and Saltiel, A. R., 1988, Structural and functional roles of glycosylphosphatidylinositol in membranes, Science 239:268–275.PubMedCrossRefGoogle Scholar
  69. Machicao, F., Mushack, J., Seffer, E., Ermel, B., and Haring, H. U., 1990, Mannose, glucosamine and inositol monophosphate inhibit the effects of insulin on lipogenesis. Further evidence for a role for inositol phosphate-oligosaccharides in insulin action, Biochem. J. 266:909–916.PubMedGoogle Scholar
  70. Manchester, K. L., 1963, Stimulation by insulin of incorporation of [32P]phosphate and [14C]acetate into lipid and protein of isolated rat diaphragm, Biochim. Biophys. Acta 70:208–210.CrossRefGoogle Scholar
  71. Martiny, L., Antonicelli, F., Thuilliez, B., Lambert, B., Jacquemin, C., and Haye, B., 1990, Control by thyrotropin of the production by thyroid cells of an inositol phosphate-glycan, Cell Signalling 2:21–27.PubMedCrossRefGoogle Scholar
  72. Mato, J. M., Kelly, K. L., Abler, A., and Jarett, L., 1987a, Identification of a novel insulin-sensitive glycophospholipid from H35 hepatoma cells, J. Biol. Chem. 262:2131–2137.PubMedGoogle Scholar
  73. Mato, J. M., Kelly, K. L., Abler, A., Jarett, L., Corkey, B. E., Cashel, J. A., and Zopf, D., 1987b, Partial structure of an insulin-sensitive glycophospholipid, Biochem. Biophys. Res. Commun. 146:764–770.PubMedCrossRefGoogle Scholar
  74. Merida, I., Pratt, J. C., and Gaulton, G. N., 1990, Regulation of interleukin 2-dependent growth responses by glycosylphosphatidylinositol molecules, Proc. Natl. Acad. Sci. U.S.A. 87:9421–9425.PubMedCrossRefGoogle Scholar
  75. Misek, D. E., and Saltiel, A. R., 1992, An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl-phosphatidylinositol mimics some of the metabolic actions of insulin, J. Biol. Chem. 267:16266–16273.PubMedGoogle Scholar
  76. Misek, D. E., and Saltiel, A. R., 1994, An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl phosphatidylinositol promotes protein dephosphorylation in rat epididymal adipocytes, Endocrinology 135:1869–1876.PubMedCrossRefGoogle Scholar
  77. Noda, M., Yoon, K., Rodan, G. A., and Koppel, D. E., 1987, High lateral mobility of endogenous and transfected alkaline phosphatase: A phosphatidylinositol-anchored membrane protein, J. Cell Biol. 105:1671–1677.PubMedCrossRefGoogle Scholar
  78. Ortmeyer, H. K., Bodkin, N. L., Lilley, K., Larner, J., and Hansen, B.C., 1993a, Chiroinositol deficiency and insulin resistance. I. Urinary excretion rate of chiroinositol is directly associated with insulin resistance in spontaneously diabetic rhesus monkeys, Endocrinology 132:640–645.PubMedCrossRefGoogle Scholar
  79. Ortmeyer, H. K., Huang, L. C., Zhang, L., Hansen, B. C., and Larner, J., 1993b, Chiroinositol deficiency and insulin resistance. II. Acute effects of d-chiroinositol administration in streptozotocin-diabetic rats, normal rats given a glucose load, and spontaneously insulin-resistance rhesus monkeys, Endocrinology 132:646–651.PubMedCrossRefGoogle Scholar
  80. Parker, J. C., Kiechle, F. L., and Jarett, L., 1982, Partial purification from hepatoma cells of an intracellular substance which mediates the effects of insulin on pyruvate dehydrogenase and low K m cAMP phosphodiesterase, Arch. Biochem. Biophys. 215:339–344.PubMedCrossRefGoogle Scholar
  81. Pennington, S. R., and Martin, B. R., 1985, Insulin-stimulated phosphoinositide metabolism in isolated fat cells, J. Biol. Chem. 260:11039–11045.PubMedGoogle Scholar
  82. Phelps, B. M., Primakoff, P., Koppel, D. E., Low, M. G., and Myles, D. G., 1988, Restricted lateral diffusion of PH-20, a PI-anchored sperm membrane protein, Science 240:1780–1782.PubMedCrossRefGoogle Scholar
  83. Plourde, R., d’Alarcao, M., and Saltiel, A. R., 1992, Synthesis and characterization of insulin-mimetic disaccaride, J. Organ. Chem. 57:2606–2610.CrossRefGoogle Scholar
  84. Represa, J., Avila, M. A., Miner, C., Giraldez, F., Romero, G., Clemente, R., Mato, J. M., and Varela-Nieto, I., 1991, Glycosylphosphatidylinositol/inositol phosphoglycan: A signaling system for the low-affinity nerve growth factor receptor, Proc. Natl. Acad. Sci. U.S.A. 88:8016–8019.PubMedCrossRefGoogle Scholar
  85. Roberts, W. L., Myher, T. J., Kuksis, A., Low, M. G., and Rosenberry, T. L., 1988a, Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmioylation of inositol results in resistance to phosphatidyl-specific phospholipase C., J. Biol. Chem. 263:18766–18775.PubMedGoogle Scholar
  86. Roberts, W. L., Santikarn,, S., Reinhold, V. N., and Rosenberry, T. L., 1988b, Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry, J. Biol. Chem. 263:18776–18784.PubMedGoogle Scholar
  87. Rodgers, W., Crise, B., and Rose, J. K., 1994, Signals determining protein tyrosine kinase and GPI-anchored protein targeting to a glycolipid-enriched membrane fraction, Mol. Cell. Biol. 14:-5384–5391.PubMedGoogle Scholar
  88. Romero, G., Luttrell, L., Rogol, A., Zeller, K., Hewlett, E., and Larner, J., 1988, Phosphati-dylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators, Science 240:509–511.PubMedCrossRefGoogle Scholar
  89. Romero, G., Gamez, G., Huang, L. C., Lilley, K., and Luttrell, L., 1990, Antiinositol glycan antibodies selectively block some of the actions of insulin in intact BC3H1 cells, Proc. Natl. Acad. Sci. U.S.A. 87:1476–1480.PubMedCrossRefGoogle Scholar
  90. Saltiel, A. R., 1987, Insulin generates an enzyme modulator from hepatic plasma membranes: Regulation of adenosine 3′,5′-monophosphate phosphodiesterase pyruvate dehydrogenase, and adenylate cyclase, Endocrinology 120:967–972.PubMedCrossRefGoogle Scholar
  91. Saltiel, A. R., and Cuatrecasas, P., 1986, Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid, Proc. Natl. Acad. Sci. U.S.A. 83:5793–5797.PubMedCrossRefGoogle Scholar
  92. Saltiel, A. R., and Cuatrecasas, P., 1988, In search of a second messenger for insulin, Am. J. Physiol. 255:C1–C11.PubMedGoogle Scholar
  93. Saltiel, A. R., and Sorbara-Cazan, L. R., 1987, Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes, Biochem. Biophys. Res. Commun. 149:1084–1092.PubMedCrossRefGoogle Scholar
  94. Saltiel, A. R., and Steigerwalt, R. W., 1986, Purification of a putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from rat adipocytes, Diabetes 35:698–704.PubMedCrossRefGoogle Scholar
  95. Saltiel, A. R., Jacobs, S., Siegel, M., and Cuatrecasas, P., 1981, Insulin stimulates the release from liver plasma membranes of a chemical modulator of pyruvate dehydrogenase, Biochem. Biophys. Res. Commun. 102:1041–1047.PubMedCrossRefGoogle Scholar
  96. Saltiel, A. R., Siegel, M. I., Jacobs, S., and Cuatrecasas, P., 1982, Putative mediators of insulin action: Regulation of pyruvate dehydrogenase and adenylate cyclase activities, Proc. Natl. Acad. Sci. U.S.A. 79:3513–3517.PubMedCrossRefGoogle Scholar
  97. Saltiel, A. R., Doble, A., Jacobs, S., and Cuatrecasas, P., 1983, Putative mediators of insulin regulate hepatic acetyl CoA carboxylase activity, Biochem. Biophys. Res. Commun. 110:789–795.PubMedCrossRefGoogle Scholar
  98. Saltiel, A. R., Fox, J. A., Sherline, P., and Cuatrecasas, P., 1986, Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase, Science 233:967–972.PubMedCrossRefGoogle Scholar
  99. Saltiel, A. R., Sherline, P., and Fox, J. A., 1987, Insulin-stimulated diacylglycerol production results from the hydrolysis of a novel phosphatidylinositol glycan, J. Biol. Chem. 262:1116–1121.PubMedGoogle Scholar
  100. Saltiel, A. R., Ravetch, J., and Aderem, A. A., 1991, Functional consequences of lipid-mediated protein-membrane interactions, Biochem. Pharmacol. 42:1–11.PubMedCrossRefGoogle Scholar
  101. Seals, J. R., and Czech, M. P., 1980, Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator, J. Biol. Chem. 255:6529–6531.PubMedGoogle Scholar
  102. Selveraj, P., Roose, W. F., Siber, R., and Springer, T., 1988, The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal hemoglobinuria, Nature 333:565–568.CrossRefGoogle Scholar
  103. Simmons, D., and Seed, B., 1988, The Fc gamma receptor of natural killer cells is a phospholipid-linked membrane protein, Nature 333:568–570.PubMedCrossRefGoogle Scholar
  104. Skillen, A. W., Hawthorne, G. C., and Turner, G. A., 1987, Serum alkaline phosphatase in rats with streptozotocin-induced diabetes, Horm. Metab. Res. 19:505–506.PubMedCrossRefGoogle Scholar
  105. Stafford, H. A., Tykocinski, M. L., Wolin, D. M., Holeus, V. M., Roose, W. F., Atkinson, J. P., and Medof, E., 1988, Normal polymorphic variations and transcription of the decay accelerating factor gene in paroxysmal noctural hemoglobinuria cells, Proc. Natl. Acad. Sci. U.S.A. 85:880–884.PubMedCrossRefGoogle Scholar
  106. Stein, J. M., and Hale, C. N., 1974, The effect of insulin on 32P incorporation into rat-fat cell phospholipids, Biochim. Biophys. Acta 337:41–49.PubMedGoogle Scholar
  107. Steven, V. L., and Raetz, C.K.H., 1991, Detection GPI biosynthesis in extracts of three Thy-1 negative lymphoma cell mutants, J. Biol. Chem. 266:10039–10042.Google Scholar
  108. Stroynowski, I., Soloski, M., Low, M. G., and Hood, L., 1987, A single gene encodes soluble and membrane-bound forms of the major histocompatibility Qa-2 antigen: Anchoring of the product by a phospholipid tail, Cell 50:759–768.PubMedCrossRefGoogle Scholar
  109. Suzuki, S., Toyoto, T., Suzuki, H., and Goto, Y., 1984, A putative second messenger of insulin action regulates hepatic microsomal glucose-6-phosphatase, Biochem. Biophys. Res. Commun. 118:40–46.PubMedCrossRefGoogle Scholar
  110. Tartakoff, A. M., and Singh, N., 1992, How to make a glycoinositol phospholipid anchor, Trends Biochem. Sci. 17:470–473.PubMedCrossRefGoogle Scholar
  111. Thomas, J., Webb, W., Davitz, M. A., and Nussenzweig, V., 1987, Decay-accelerating factor diffuses rapidly on Hela (AE) cell surfaces, Biophys. J. 51(issue 2, part 2):522a.Google Scholar
  112. Tse, A.G.D., Barclay, A. N., Watts, A., and Williams, A. F., 1985, A glycophospholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes, Science 230:1003–1008.PubMedCrossRefGoogle Scholar
  113. Urakaze, M., Kamitoni, T., DeGasperi, R., Sugiyama, E., Chang, H., and Yeh, E.T.H., 1992, Identification of a missing link in GPI anchor biosynthesis in mammalian cells, J. Biol. Chem. 267:6459–6462.PubMedGoogle Scholar
  114. Vidugiriene, J., and Menon, A. K., 1994, The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum, J. Cell Biol. 127:333–341.PubMedCrossRefGoogle Scholar
  115. Waneck, G. L., Stein, M. E., and Flavell, R. A., 1988, Conversion of a PI-anchored protein to an integral membrane protein by a single amino acid mutation, Science 241:697–699.PubMedCrossRefGoogle Scholar
  116. Witters, L. A., and Watts, T. D., 1988, An autocrine factor from Reuber hepatoma cells that stimulates DNA synthesis and acetyl-CoA carboxylase: Characterization of biologic activity and evidence for a glycan structure, J. Biol. Chem. 263:8027–8036.PubMedGoogle Scholar
  117. Witters, L. A., Watts, T. D., Gould, G. W., Lienhard, G. E., and Gibbs, E. M., 1987, Regulation of protein phosphorylation by insulin and an insulin-mimetic oligosaccharide in 3T3-L1 adipocytes and FaO hepatoma cells, Biochem. Biophys. Res. Commun. 153:992–998.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Alan R. Saltiel
    • 1
  1. 1.Department of Signal Transduction, Parke-Davis Pharmaceutical ResearchDivision of Warner-Lambert Co.Ann ArborUSA

Personalised recommendations